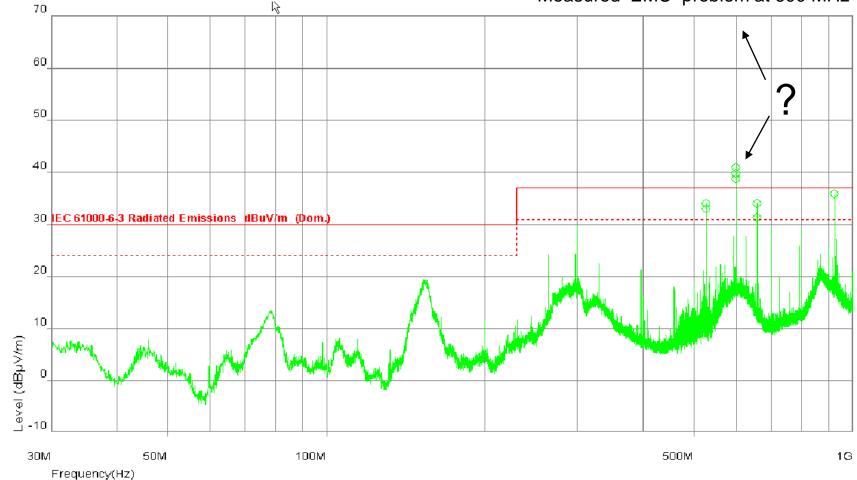
Cadstar Advanced Training June 25th - 29th 2012

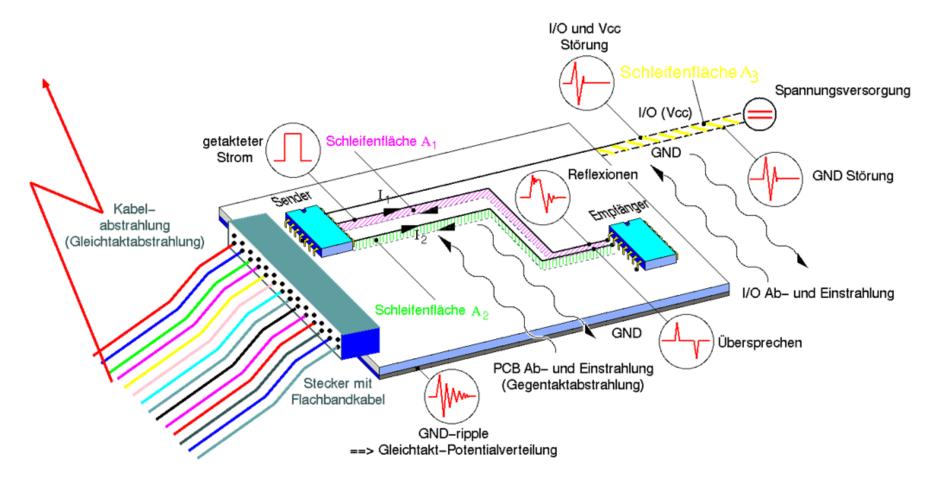
PI Advance Scope & Software Architecture

Ralf Brüning Product Manager High Speed Design Solutions/ Senior Partner Zuken EMC Technology Center Paderborn



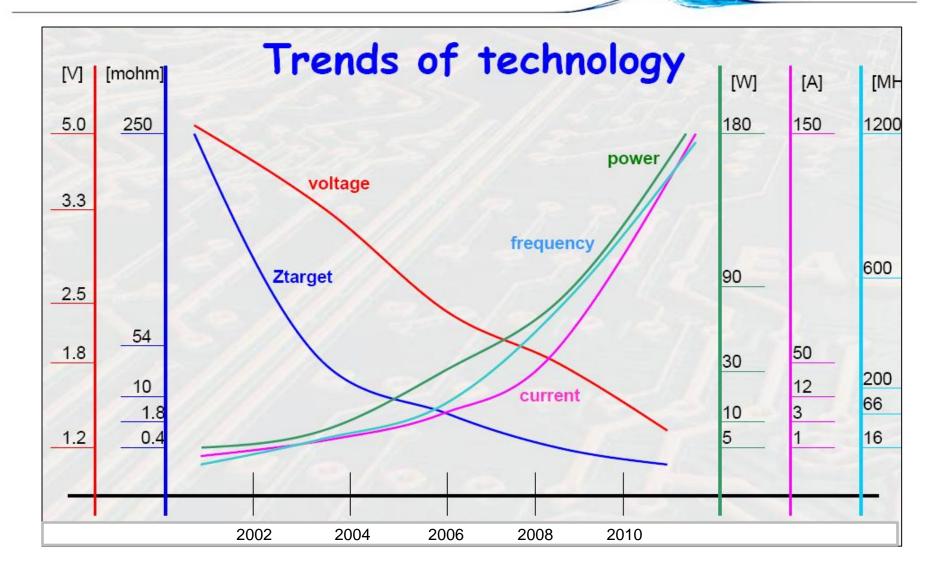
© Zuken 2011

EMC and PCBs ?

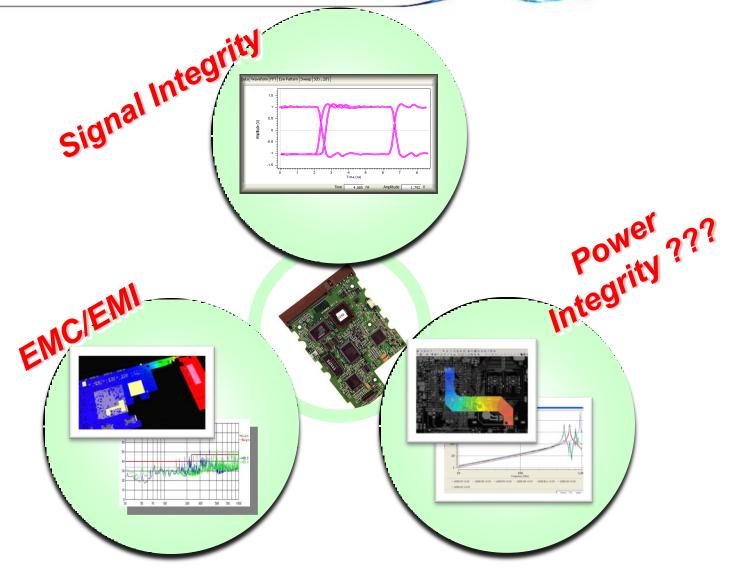

EMC measurement result:

Measured EMC problem at 600 MHz

EMC-Mechanisms on PCBs

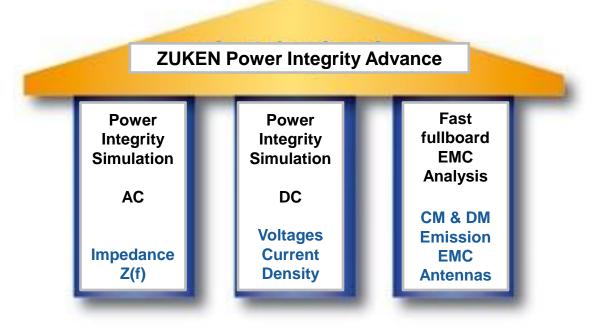


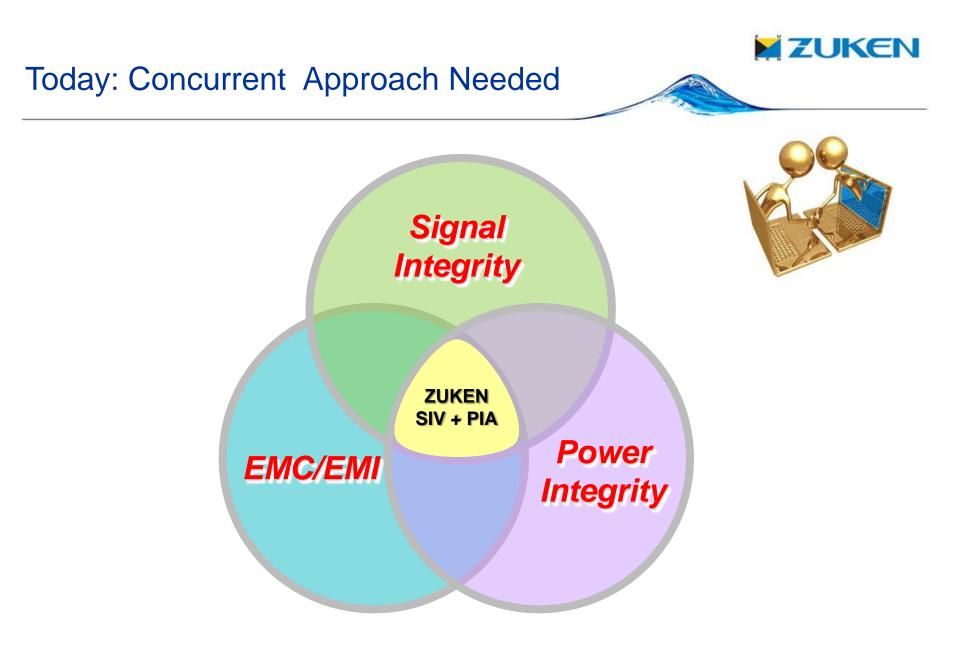
Some Basics #0 Decibel ? Why dB ? What is that ? Decibel notation will characterize the relation or proportion between 2 quantities rather then giving just single value

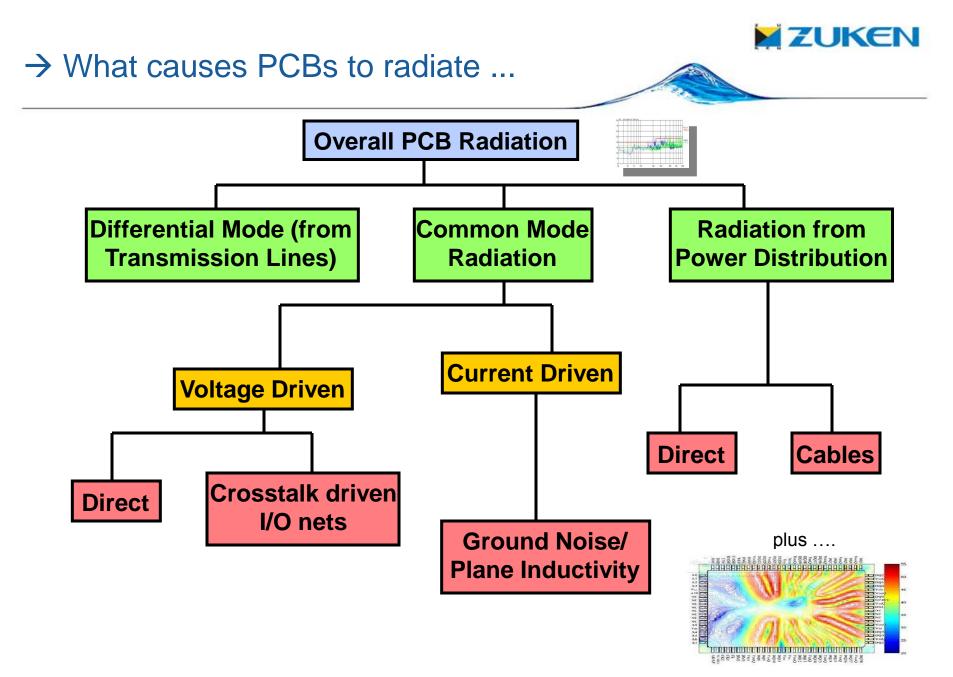

$$r = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right) = 10 \cdot \log_{10} \left(\frac{U_1^2 / R}{U_2^2 / R} \right) = 20 \cdot \log_{10} \left(\frac{U_1}{U_2} \right)$$
$$dB\mu V \equiv 20 \cdot \log_{10} \left(\frac{U \text{ in } V}{1\mu V} \right)$$

Ratio	dB
1000000	120
100000	100
10000	80
1000	60
100	40
10	20
5	13,98
3	9,54
2	6,02
1	0
0,1	-20
0,01	-40
0,001	-60

Electronic Design Trends




The Good Old Days: Verification Disciplines



The 3 Functional Columns of Power Integrity Advance

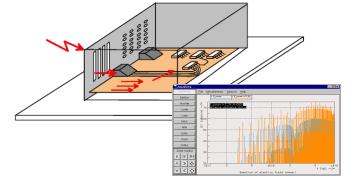
The Idea behind: UMR EMC-Expert System Approach

- Modular *new* approach to EMC analysis: separated into single algorithms, covering a specific EMI effect, individually
- Based on available information about ICs, (i.e., circuit models, IBIS)
- Therefore shares/utitlizes information which might be already inhouse (SI simulation process)
- Treating:
 - Differential- & common mode radiation
 - Power Bus analysis
- Verified by measurements & numerical computations (at UMR and their partners)
- Goals:
 - Fast identification of critical areas & configurations
 - Estimation of potential radiation levels
 - Usable within the design-flow, by **non-experts**, too!

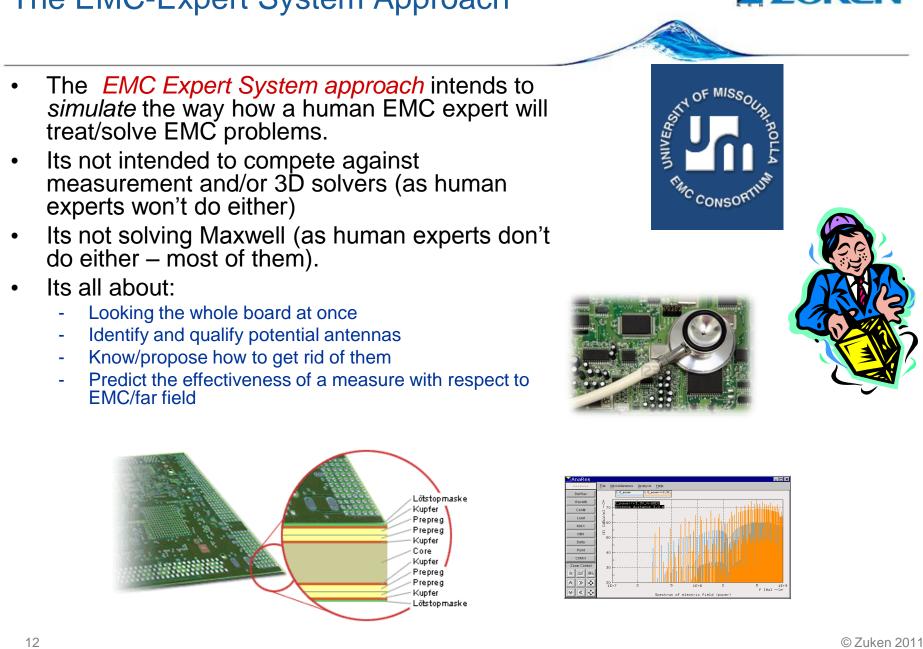
The EMC-Expert System Approach The EMC Expert System Consortium

• Mission of the University of Missouri Rolla (UMR) Expert System Consortium (EMC Consortium):

> The software looks for EMI antennas on or off the board and evaluates how hard they are being driven. It identifies any problems found with the board layout and estimates the impact of these problems on the radiated EMI from the system


> > Source: www.emclab.umr.edu/consortium

Other members include:


Apple Computer Corporation, IBM Corporation, Intel, LG Corporation, Mentor Graphics, NEC Corporation, NCR, Siemens, Sony Corporation

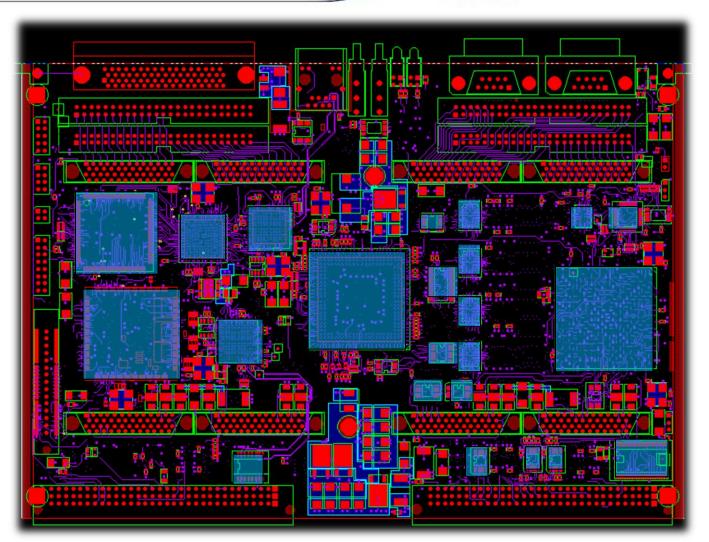
- Current research of the EMC Consortium
 - System Level EMI predictions
 - DC Power Bus analysis
 - ESD related analysis

The EMC-Expert System Approach

PIA EMC&PI: Noise/Problem Source Identification

51.34 30.27 41.76 22.58

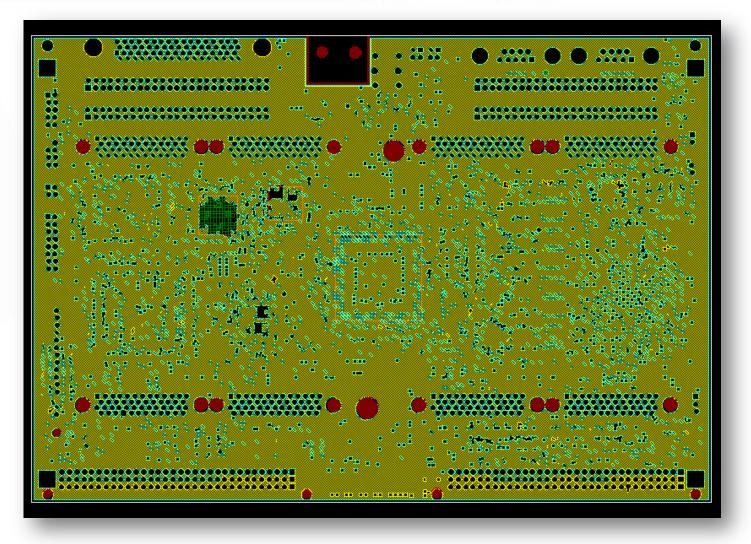
Goal: Identification of sources, contributing effects and configurations to a specific peak in the spectrum, feedback to CAD layout



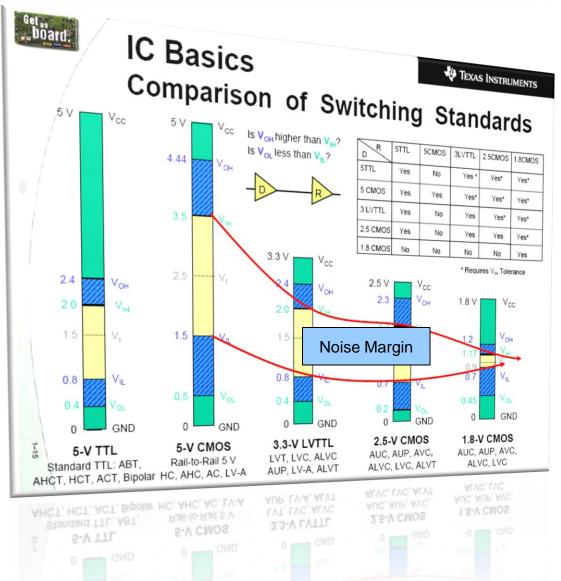
© Zuken 2011

A typical PCB (from 2009, industry automation, Power-PC & DDR Memory)

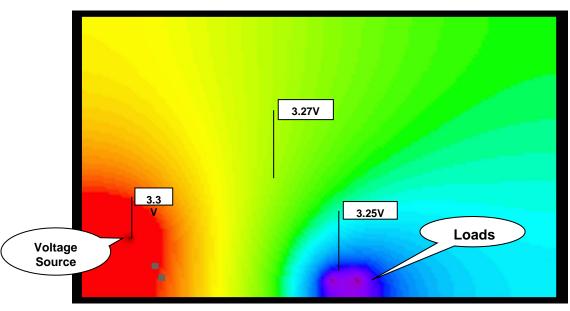
- The active devices (ICs) will consume the majority of the energy
- They need the various voltage levels to work (on this board 17 different supply and ground nets)
- Several BGAs are used on this design



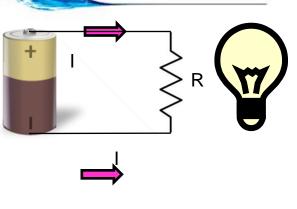
So most of our digital PCBs have things like ZUKEN this (hopefully)

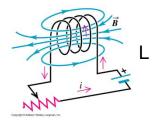

What is this ???

A power distribution system (PDS)



Lowered Noise Margins of todays ICs

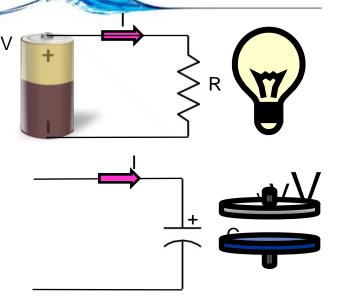

Voltages are not equally distributed and not considered ideal over copper planes

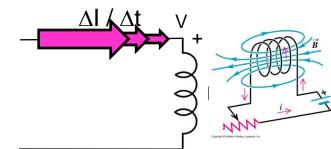



Example: 3.3V Power Distribution System

"Voltage drops" occur on the copper area and within the vias – but why?

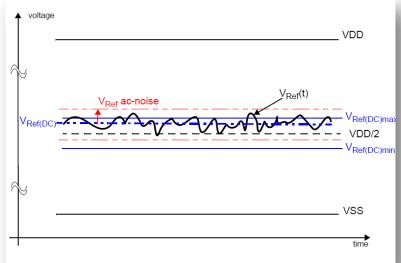
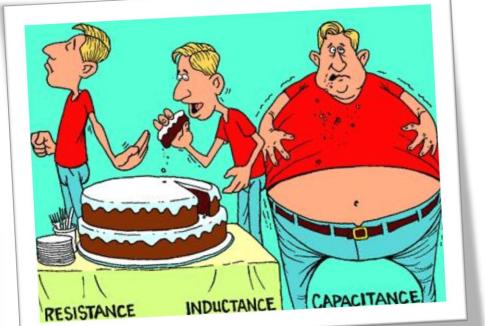
- Voltage: Electrical potential difference (denoted ∆V and measured in volts) <u>between two points</u>. A voltage may represent either a source of energy (electromotive force) or it may represent lost or stored energy (potential drop). Voltage can be caused by static electric fields, by electric current through a magnetic field, by time-varying magnetic fields, or a combination of all three.
- Current: **Electric current** is a flow of electric charge through a medium. This charge is typically carried by moving electrons in a conductor such as wire. An electric current (Amperes law) produces a magnetic field.
- No voltage without current, no current without voltage
- Ground: Not an acceptable technical term at all (current return path is what should be used, Dr. Archembault from IBM invented the phrase that ground is a *place to plant potatos or carrots*), so there even as well does not exist a "Ground-Bouncing" like people assume it to happen, it's a narrowing of the potential difference

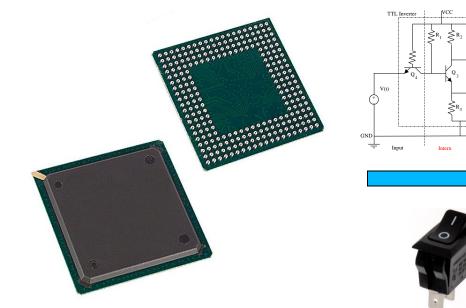




- Resistors dissipate energy
 - Resistance = Voltage / Current (R = V / I)
 - Voltage = Current * Resistance (V = I * R)
- Capacitors store <u>energy</u> in an electric field
 - Charge = Capacitance * Voltage (q = CV)
 - Current ($\Delta q / \Delta time$) = C * ($\Delta V / \Delta t$) (I = C * $\Delta V / \Delta t$)
 - Power plane over ground plane is a great capacitor!
- Inductors store energy in a magnetic field
 - Voltage = Inductance * $(\Delta I / \Delta t)$ (V = L * $\Delta I / \Delta t$)
 - Oppose current changes with a voltage
 - Inductive kick: pull the plug on a vacuum cleaner when it's running!

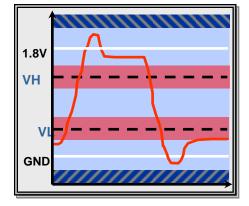
- For Signal Integrity you should care for resistances and capacitances
- For Power Integrity, *Mr. Inductance* is the guy to care for
- Requirements do increase (i.e. JEDEC DDRx)


Figure 90 — Illustration of $V_{\text{Ref(DC)}}$ tolerance and V_{Ref} ac-noise limits

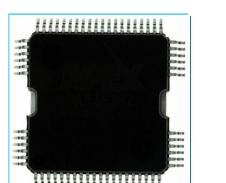
Picture © Agilent

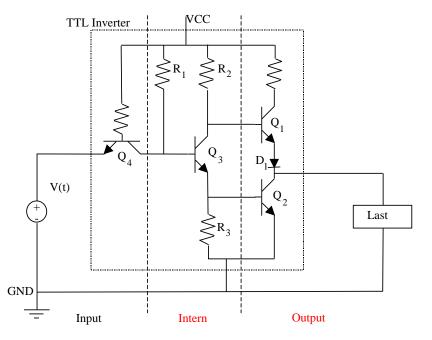
When Integrated Circuits Switch



- They (should) change logic state.
- They need charge.
- Voltage has to be delivered (for reaching logic levels).
- A switching current will occur !

Relation between voltage & current ? \rightarrow Ohm's law




Last

Output

Power Integrity: Switching Current

- IC Switching *current* depends on:
 - Number of active outputs
 - Activity state
 - Driver rise and fall times
 - Clock frequencies
 - Load conditions

Do you have to worry ?

It depends ... but I think YES !

Design Challenges increase dramatically !

(Example: Xilinx design guides for Xilinx Spartan FPGAs)

PDS Design for FPGAs One capacitor per Vcc pin Yes, EVERY Vcc pin – Vccint, Vcco, Vccaux, Vref Within the total count for each supply: Allocate some in each frequency range 3% 680 uF 7% 22 uF 15% 0.22 uF 25% 0.047 uF 50% 0.001 uF Power planes and/or sandwiches are a must

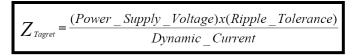
:12

Power Planes		XILINX*
Power Planes	The Spartar-3E high-speed design successfully uses a one-layer, triple split p quadrant of the design is shown in Figure 7. The design has 200-300 ps edge switching noise of 80 simultaneously switching LVCMOS 3.3V I/Os.	lane. One rates and a
	یسی Figure 7: One Quadrant of the One-Layer, Triple Split Plan	
	The final plane requirements are determined by the required VO and V _{COO} vol V _{COO} voltage is 2.5V, the layout is simple because only two planes are require split plane is shown in Figure 8. Plane requirements may also be driven by oth such as the need to avoid shopes that resonate at selected frequencies or the splits when routing traces on adjacent layers.	d. An example er Siconcerns,
	Saujaja	2014
	Figure 8: Example Split Plane	

Pictures © Xilinx

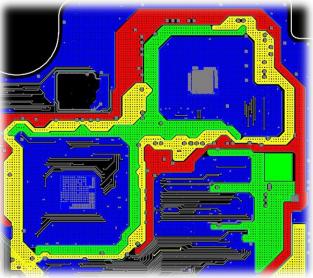
Evolution of Power Distribution Systems

- The requirements on power distribution systems have changed in the last 20 years.
- CMOS voltages are decreasing while more pins can switch simultaneously, inducing serious switching current (and more power consumption), at higher frequencies.
- Matching the *target impedance* (ratio of voltage/current while switching) the power distribution system is a key problem in modern high speed designs.


Year	Voltage (V)	Current (A)	Max-Pins (IC)	Z _{target} (mΩ)	f [MHz]
1990	5	1	68	250	16
1994	3.3	3	244	50	66
1998	2.5	12	>500	10	233
2002	1.8	50	>1200	2	800
2006	1.5	> 100	> 2000	0.5 - 1	> 2GHz
2010	1.0	Several hundred	> 4000	<< 1	> 3 GHz

- We do have the relation between voltages (to be supplied) and currents (occurring) →
 Ohms law describes that can be applied for the relation between voltage, current and impedance
- Resistance in the PCB design world goes to become impedance (ratio between voltage and current in the switching process)
- Please Note: This is a different impedance the characteristic impedance of signal traces (means, computed differently)
- Silicon vendors nowadays define Ztarget as requeriment/constraint

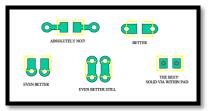
Processor	Parameter					No. of	Notes		
	V _{SUPPLY}	P _{MAX}	I _{MAX}	V _{RIPPLE}	VRIPPLEPCT	di/dt	Z _{TARGET}	V _{DD} pins	Notes
MPC8245 @ 300 MHz	1.8 V	2.2 W	1.22 A	± 100 mV	5.6%	0.1 A/ns	83 mΩ	20	1,2
MPC8245 @ 466 MHz	2.1 V	3.1 W	1.47 A	± 100 mV	4.8%	0.1 A/ns	69 mΩ	20	1
MPC7410 @ 500 MHz	1.8 V	11.9 W	6.61 A	± 100 mV	5.6%	0.2 A/ns	15 mΩ	18	1
MPC7445 @ 867 MHz	1.3 V	21.0 W	16.15 A	± 50 mV	3.9%	0.2 A/ns	3.1 mΩ	21	1
MPC7457 @ 1267 MHz	1.3 V	25.6 W	19.69 A	± 50 mV	3.9%	0.2 A/ns	2.6 mΩ	21	1,3
MPC7447A @ 1420 MHz	1.3 V	30.0 W	23.08 A	± 50 mV	3.9%	0.2 A/ns	2.2 mΩ	21	1


Table 1. PowerPC Processor Parameters

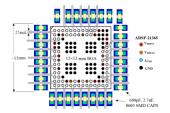
 The allowed voltage tolerance (voltage ripple) must be known/defined (usually around 5 %) to derive Z_{target}

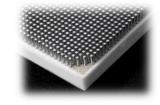
Voltage Supply for ICs: Power Distribution System (PDS)

- The power distribution system (PDS) will provide voltages and deliver *charge* to the ICs on a PCB
- Charge on the board must be supplied over a broad frequency range:
 - Low frequency activities (we still have them)
 - In MHz range for CPU-peripheral interfaces
 - At the clock frequency (several hundreds of MHz)
 - Provide a low impedance path for parasitic voltages at various harmonics of the clock

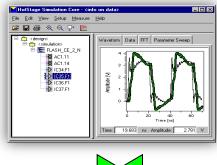


Power Integrity Objective Power Integrity ?

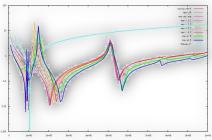

Power Integrity \Leftrightarrow Ensure proper behaviour of power distribution systems (PDS) (ako *Integrity* behaviour of power supply system)

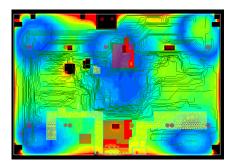

PCB Design today \rightarrow Increasing challenges, complexity is growing continiously:

- Faster data rates (i.e. serial interconnects)
- Super-complex devices (several 1000 pins)
- Very fast memory interfaces (DDR2 interfaces common, i.e. on ASIC cells and/or FPGAs)
- Increased number of power supplies (dozends)
- Increased power consumption, problems with large currents and thermal management
- Requirements beyond *classical* SI constraints (i.e. target impedances and decoupling requirements for CPUs or FPGAs)



Pictures © AMD and IBM





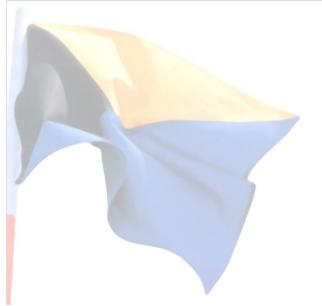
2577 pin CCGA



EMC-What-Ifs: Show Field Hot-Spots & Coupling Voltages, fix problems on the fly

📕 Lightning EMC - MBC	_neu.rif - [Radiation]					_ 🗆 ×	
∐ Eile Edit Simulation W	indow <u>H</u> elp					_ 8 >	
📗 👖 🕒 🛍 🗙 🛛 🤊	o 😑 🅸 🦹 🎽 📗	ê4					
EMI <u>Det</u> EMI <u>Connector</u> EMI <u>Heatsink</u>							
	‰∰ E-Net	Total Σ [™] [dB(μ∨/m)]/[MHz]	Signal Loop ☐* [dB(μV/m)]/[MHz]	l/O Driven by 🛋 [dB(μV/m)]/[MHz]	I/O Coupled to coupled to [dB(μV/m)]/[MHz]	✓_CM [dB]/[MHz]	
SIGN10_SIGN11_SIGN13	SIGN10_SIGN11_SIGN13	35.35 / 990.00	35.35 / 990.00		54.39 / 390.00 / SIGN7_SIGN8_SIGN9	0.00 / 390.00	
SIGN14_SIGN4_SIGN5	SIGN14_SIGN4_SIGN5	50.05 / 390.00	< 20	50.05 / 390.00 / CN1	< 20	< -60 dB	
SIGN7_SIGN8_SIGN9	SIGN7_SIGN8_SIGN9	54.39 / 390.00		54.39 / 390.00 / CN2		< -60 dB	

DM I/O CN HS PB Mdl Cls Rtg


ZUKEN EMC-What-Ifs: Show Field Hot-Spots & Coupling Voltages, fix problems on the fly Lightning P.R.Editor Lightning P.R.Editor MBC8/MBC_neu _ 🗆 🗙 Ele Edit Select View Configure Placement Routing Utilities Layer: 10 (L1) Help Benefit 🔇 🖸 🕼 🔍 ର୍ ର୍ Allow quick EMC-What-Ifs with respect to EMC noise caused by coupling structures. SLightning P.R.Editor Lightning P.R.Editor MBCB/MBC_neu Ele Edit Select View Configure Placement Routing Utilities Layer: 10 (L1) Help ■ 毎 | 3 臨 6 × | > > | ▼ ◆ | 其 1 1 4 日 | 卧 時 田 ● 4 5 2 2 5 5 0 | → 4 5 5 4 ? ◇ 5 4 🕄 🖸 🖉 🔍 ର୍ ର୍ Select 84.3626 106.7836 mm Increase spacing

102.5998 35.0108 mm

Questions before the coffee break

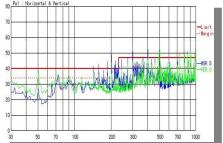
What are the 4 key features of PIA EMC Analysis?

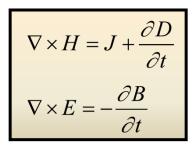
- 1. It screens complete boards !
- 2. Its FAST (to be used in design process)
- 3. It identifies EMI sources (root causes) in form of structures on PCB (nets, ICs, connectors etc.)
- 4. It allows EMC and PI what-ifs

31

Typical Ways of Treating EMC: Design Guidelines, Measurement (& Consultancy)

Typically during PCB design EMC issues are covered upfront by design guidelines and then in prototype stage by doing measurements.


If this won't succeed, often external or internal EMC experts are asked for help.

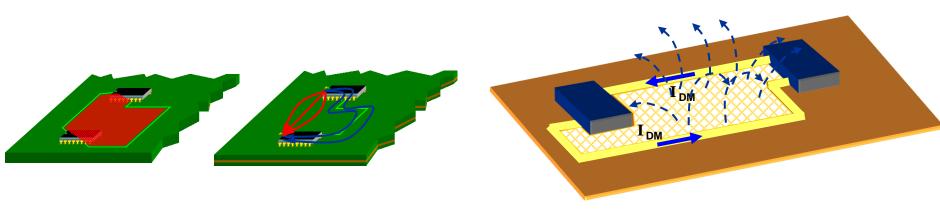

But EMC Design rules will not make a good circuit board designer and measurement will not detect concrete error sources.

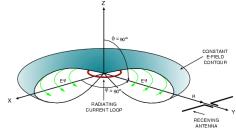
And, experts are limited/rare (and not cheap).

So designers should:

- 1. Use common sense !
- 2. Visualize and analyze signal current paths
- 3. Locate parasitic antennas and crosstalk paths
- 4. Be aware of potential EMI sources and antennas
- 5. Use software tools which will help/automate steps 1.-4. \rightarrow Lightning PIA EMC approach

Maxwell Equations ?

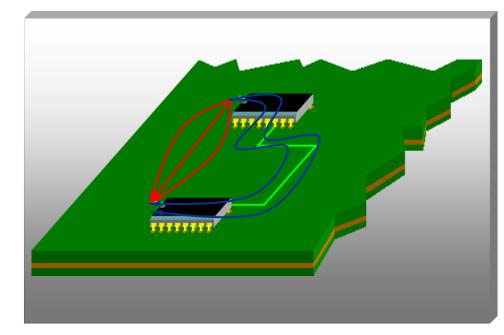

EMC Mechanism: Differential Mode Radiation


Radiated emissions due to current loops created by signal traces and return paths

- Large current loops created by signal and GND traces
- GND planes decrease loop areas drastically

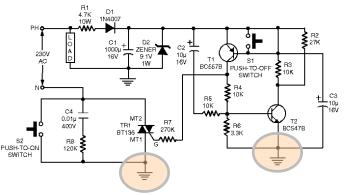
Main parameters are:

- Spectrum of the signal current I(f) (Driver, Receivers, Terminations, etc.)
- Frequency f
- Loop Area A (distance to next reference plane of each net-segment)
- Distance to closest trace (trace length on top or bottom layer)



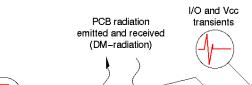
ZUKEN

32

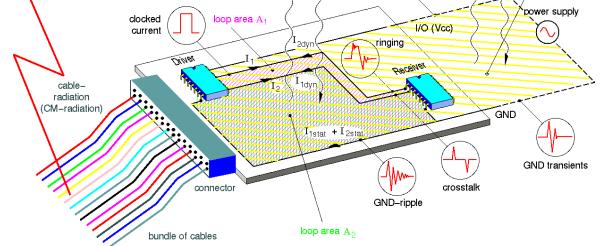

Return Currents

- Currents always returns to their source!
- They usually take the path:
 - of least impedance (for frequencies > 1MHz)
 - Not the path of the least resistance, only at very low frequencies, around 10 kHz)
 - of course not the path of shortest distance or most convenient/nicest routing path
- Current loops create inductance !
- "Ground" is not an acceptable technical term.

ZUKEN


© Zuken 2011

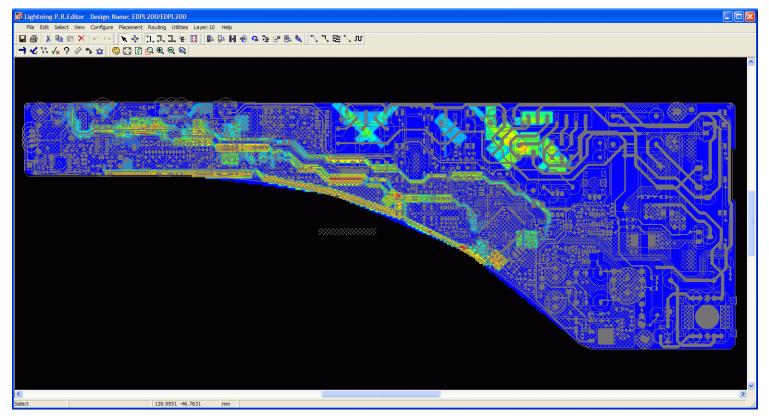
© Zuken 2011


EMC Mechanism: Common Mode Radiation

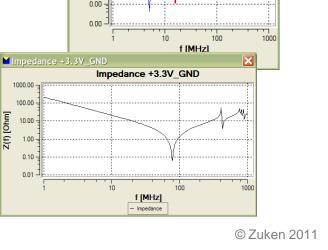
- Caused by parasitic antennas which are built up by:
 - Board to heat-sink coupling
 - Coupling between connectors
 - Board to connector coupling
 - Connector to heat-sink coupling
 - Coupling through cables

I/O radiation

emitted and received




EMC-Mechanismn: Common Mode EMC



Common Mode: I/O-Coupling

Crosstalk between fast signals to neighbourhood (IO) lines will cause noise voltages visible at the connectors

Impedances of C704

Impedances of C704

100.00

10.00 1 00

0.01

Z(f) [Ohm] 0 10

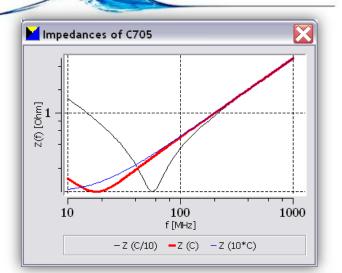
1000.00

100.00

Z(f) [Ohm] 10.00

PI Advance - Power Integrity Analysis

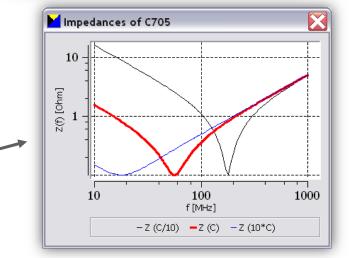
- Capabilities of the Lightning PI Advance Power Integrity Solver
- ☑ Fast method to investigates the quality and efficiency of all supply systems of a PCB:
 - Detection of:
 - ✓ Ineffective decaps,
 - High impedance connection of decaps to power supply system,
 - Critical input buffers, w.r.t. the power bus noise voltage.
 - Estimation of:
 - Effective capacitance of total power bus.
 - Total power bus impedance (including) self resonances),
 - ✓ Current drawn by each IC,
 - Power bus noise voltage, and
 - ✓ Radiated electrical field.

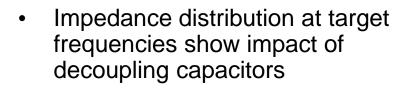


×

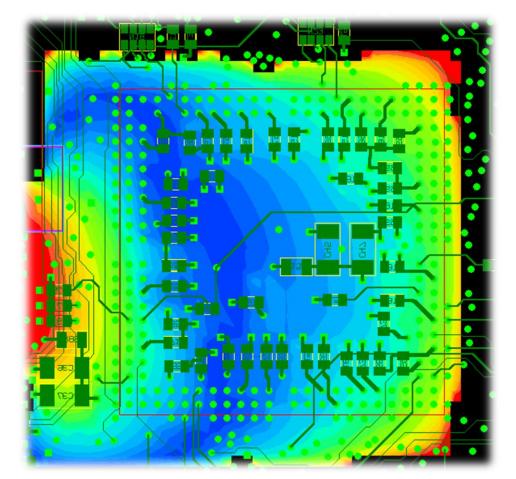
PI Advance: Decoupling Analysis & What If

DeCap potentially not effective ?


🖌 File	e <u>E</u> dit <u>S</u> imulati	ion Windo	w <u>H</u> elp					-
	M 🖻 🛍	×		le 14		MHz	v mm	v ns v
Com			GNI					
2011	Component	Value	Inductance [nH]	♣ Res. Freq. f0 [MHz]	🔩 Ineffect	>>> Power Bus	🐀 SMD	Nearest IC
C610	C610	100.00	1.94	11.42		+3.3V_GND	Yes	V100
C611	C611	100.00	9.41	5.19		+3.3V_GND	Yes	U602
C700	C700	100.00	3.27	8.80		+3.3V_GND	Yes	U400
C701	C701	100.00	1.55	12.80		+3.3V_GND	Yes	U700
C702	C702	100.00	1.56	12.76		+3.3V_GND	Yes	V108
C703	C703	100.00	2.28	10.55		+3.3V_GND	Yes	U404
C704	C704	47000.00	0.80	0.82		+3.3V_GND	Yes	U604
C705	C705	100.00	0.80	17.79		+3.3V_GND	Yes	U902
C706	C706	100.00	1.44	13.26		+3.3V_GND	Yes	U504
C707	C707	100.00	1.69	12.25		+3.3V_GND	Yes	U103
C708	C708	100.00	0.80	17.79		+3.3V_GND	Yes	U500
C709	C709	100.00	0.80	17.79		+3.3V_GND	Yes	U603
C802	C802	220000.00	0.80	0.38		+3.3V_GND	Yes	U106
C803	C803	100.00	0.80	17.79		+3.3V GND	Yes	U106


ZUKEN

Change Value within Lightning from 470p to 100N → Quick What-If


Ele		ulation Window Help	- X2 - 1	-1		69	Mila and an	m fail mail	-	. 8
			GNE B			6	MHz 🖌 m	m 🖌 ns	• • •	
<u>C</u> ompo	onent <u>N</u> et	Supply Power Bus Part Name		🧠 Com	ponent Type	🔹 Value	🔹 Active	🔹 # Pins	# Heatsink	1
C702	C702	MCH182F104Z		Decap		100.00	ves	2	no	
C703	C703	MCH182F104Z		Decap		100.00	ves	2	no	
C704	C704	MSVD21C476M		Decap		47000.00	yes	2	no	
C705	C705	MCH182F104Z		Decap		100.00	, yes	2	no	
C706	C706	MCH182F104Z		Decap		100.00	yes	2	no	
C707	C707	MCH182F104Z		Decap		100.00	yes	2	no	
0708	C708	MCH182F104Z		Decap		100.00	yes	2	no	
0709	C709	MCH182F104Z		Decap		100.00	yes	2	no	
C710	C710	MCH182F104Z		Capacitor		100.00	yes	2	no	
C711	C711	MCH182F104Z		Capacitor		100.00	yes	2	no	
C800	C800	UWX1H100MCR1GB		Capacitor		10000.00	yes	2	no	
0801	C801	UWX1H100MCR1G8		Capacitor		10000.00	yes	2	no	
0802	C802	UUR1V221MNT1GS		Decap		220000.00	yes	2	no	
0803	C803	GRM40F104Z50PT		Decap		100.00	yes	2	no	
0804	C804	UUR1H101MNT1GS		Capacitor		47000.00	yes	2	no	
<			10							>
<u>P</u> in	Power Bus									
	🐔 Compon		PD I/O 🛹 C [nF]	PD Core [nF]	📖 # Core P	ins 🖦 Cor	e Frequency [MHz]	ESR [Ohm]	ESL Cin [nH] [nF]	
C705	C705	+3.3V_GND						0.10	0.10 100.00	

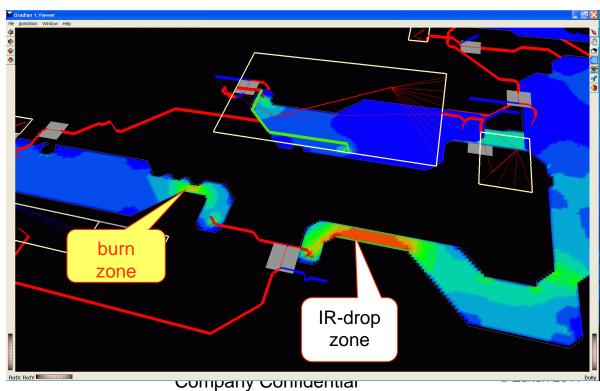
PI Advance: Decoupling Effectiveness over frequency for Copper Power Areas

- Indicate quality of placement location, value and connection inductance
- Placement or connection can be changed on the fly in P.R.Editor for what if capabilities

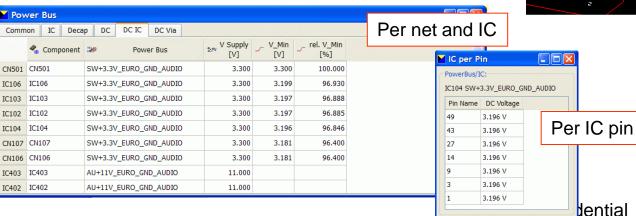
Lightning PIA: DC Power Integrity

Supply system results

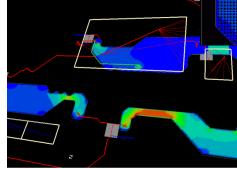
DC-Analysis of supply systems

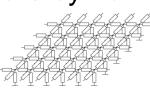

- Table driven DC-Analysis
- Results for supply system / ICs / Vias in separate tables

Clas	sification	1								-		1					
Compon	ent Net	Supply Via T	Type DC Via Power	Bus						Pc 🛃	ower Bus						
	🔏 Name	Ø1.	Part Name	🖣, Туре	🔹 Value	Active	🛚 # Pins 📕 Heatsink	Heatsink Area (mm²)	Heatsink Height (mm)	Comn	non IC C	ecap DC [DC IC DC		7/		
N200	CN200	HIF3BA-36PA /	HIF3BA36PA	IC	g a san ann an an an ann an ann an an ann an		36 no					Name 🐲	V Supply	_ V Min	1 Max	Power	
N300	CN300	HIF3BA-34PA /	HIF3BA34PA	IC			34 no					Nume	(V) ⁻	0	(mA)	(W)	
N900	CN900	HIF3BA-30PA /		IC			30 no			+3.3V	_GND +3.	3V_GND	3.300	3.250	8608.892	43.596	
100	U100	-	D2901CY62146v33	IC			44 no			+3 31	_GND2 +3.	3V_GND2	3,300				
102	U102	SN7414 / SN74		IC			14 no		·	+3.50			5.500		ananan anan anan an	10101010101010	
103	U103	SN7404 / SN74	104J	IC			14 no			📕 Si	upply Pir	Voltages		X			
104	U104	SN74HC74N		IC			14 no										
105 106	U105 U106	SN74HC11N SN74HC04N		IC IC			14 no 14 no			Voltar	noc at 11700) in power bu	10 +2 21/	CND			
100	U107	Z0800210PSC		IC			40 no			voita	jes at 0700	in power bi	15 +5.5V_	GIND			
107	U108		P-7_B / HM628128	IC			32 no			Pin	Voltage	Rel. Voltag	e l	^			
100	11100	CN74UC120N		TC			16 22				voltage	Ttel. Voltag	~				
Pin P	ower Bus	DC								1	3.272 V	99.157	%				
	🐔 Name	>>> Power Bus	✤ Source	r Consumption	Package Res (mOhn	istance	Min IC Voltage			10			~				
CN200	CN200	+3.3V_GND	yes	(W)	(monin	1.000	(V) 3.300			10	3.272 V	99.159	%				
	CN800		no	0.000		1.000	3.300			26	3.272 V	99.164	0/2			1/:-	
	U102		no	0.400		1.000	3.300			20	5.272 V	33.104	-70			via	result detai
	U103		no	0.125	a state of the state of the state of the	1.000	3.300			43	3.273 V	99.167	%		Power Bus		
	U104		no	0.300		1.000	3.300								nmon IC Decap	DC DC R	
	U105		no	0.400		1.000	3.300			60	3.27	99.174	%		🐔 Name 🐲 Po	ower Bus	Min V Min (V) (%)
J106	U106	+3.3V_GND	no	0.100		1.000	3.300			CF.		00.174	A /		00 CN200 +3.3V		3.291 99.735
J107	U107	+3.3V_GND	no	0.130		1.000	3.300			65	3.2	99.174	%		3 U603 +3.3V 0 U400 +3.3V		3.278 99.332 3.27: Supply Pin Voltages
J108	U108	+3.3V_GND	no	0.000		1.000	3.300			76	3.7	99.172	0/6		4 U604 +3.3V		3 3.275 Highlight Ctrl+L
J109	U109	+3.3V_GND	no	0.000		1.000	3.300					55.172	10		0 U600 +3.3V 2 U602 +3.3V		3.20 3.274 99.197 3.300 3.274 99.224
J110	U110	+3.3V_GND	no	2 000		1.000	3.300			78			~		0 U500 +3.3V		3.300 3.273 99.196
	U111	_	no			1.000	3.300								1 U201 +3.3V		3.300 3.272 99.139
1204	11201	10 01/ CND	20	~		1.000	2 200			83	IC res	ult deta	ails I		1 U501 +3.3V 2 U502 +3.3V		3.300 3.272 99.160 3.300 3.272 99.158
					$\overline{}$					84					1 U601 +3.3V		3.300 3.272 99.138
				(Ir	nut)			04				~	0 U700 +3.3V 00 CN800 +3.3V		3.300 3.272 99.156 3.300 3.271 99.114
						put							1		2 U102 +3.3V		3.300 3.271 99.111
					Class	ificat	tion					Close	Help)	5 U105 +3.3V 6 U106 +3.3V		3.300 3.271 99.112 3.300 3.271 99.106
					01035	mca				S. Part		and grant have been	Sec. Care a	and the second second	7 U107 +3.3V		3.300 3.271 99.120

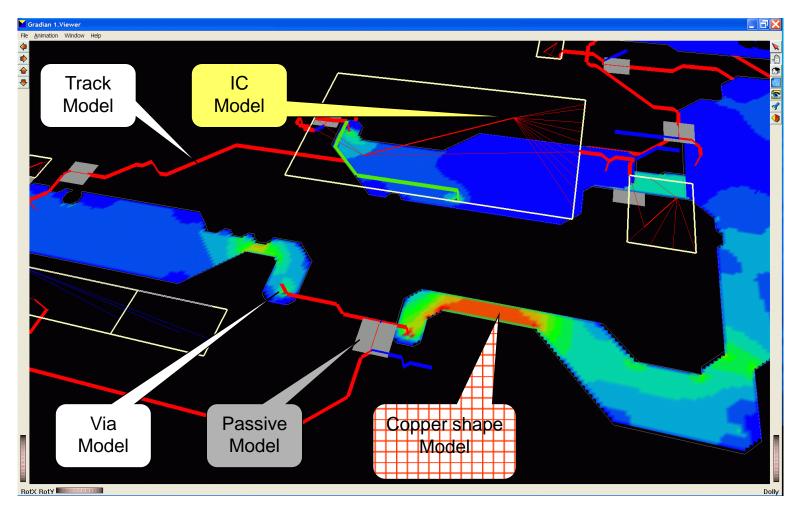


- DC solver allows analysis of DC Current Distribution and IR-Voltage drops within PCB Supply nets
 - \rightarrow High Current Nets as well
 - \rightarrow Detection of potential trouble areas in the Layout
 - \rightarrow Avoiding thermal problems and Power Supply problems

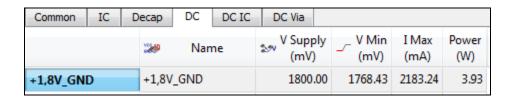



PI Advance DC Analysis

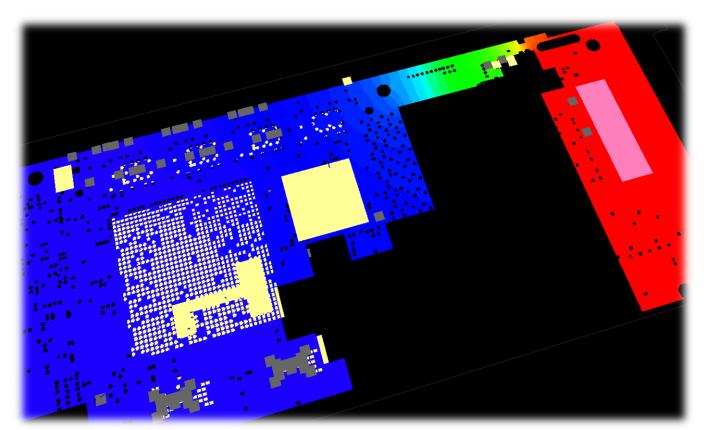
- Analysis is done highly accurate by numerical solution
 → R-Cells Grid based approach
- Analysis is done very efficiently
 → large electrical system is divided into smaller portions
- Results are visualized graphically in 3D
- Tabular results given in spreadsheet
 - · Can easily be compared with given limits



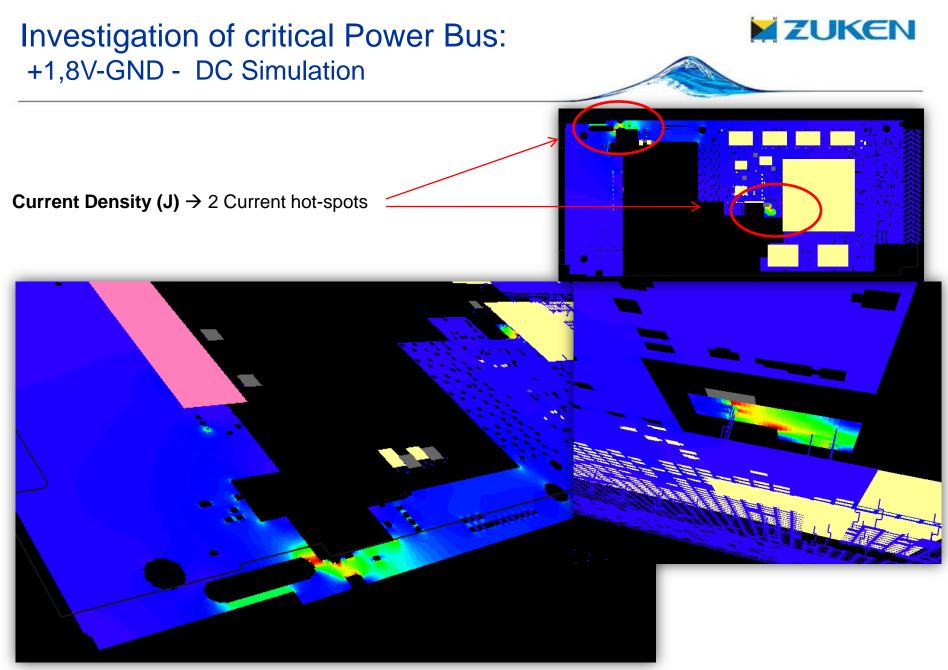
PI Advance DC Analysis

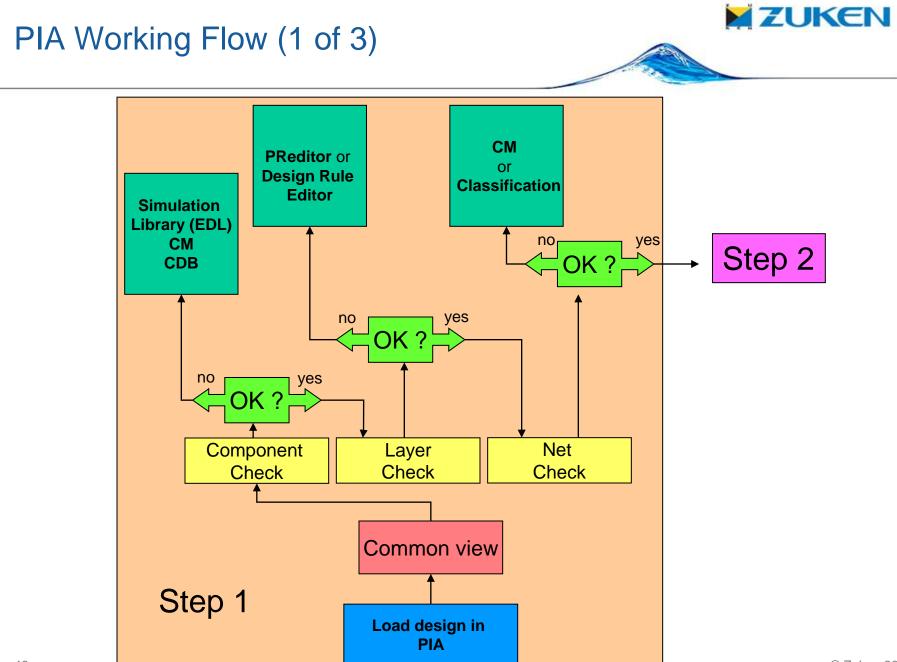


• Model Details

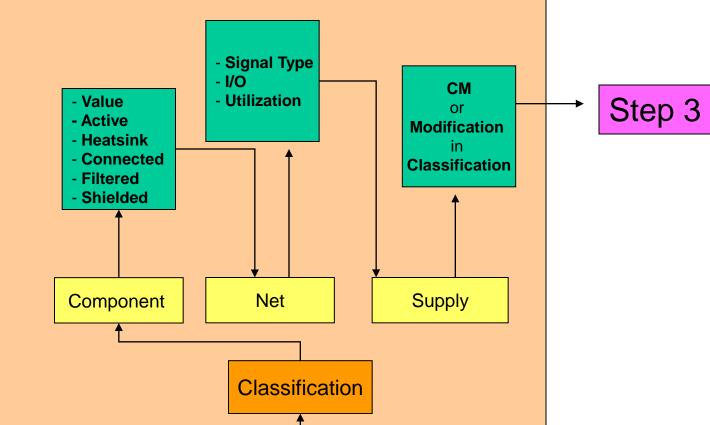


Company Confidential


Sample: Investigation of critical Power Bus +1,8V-GND - DC Simulation

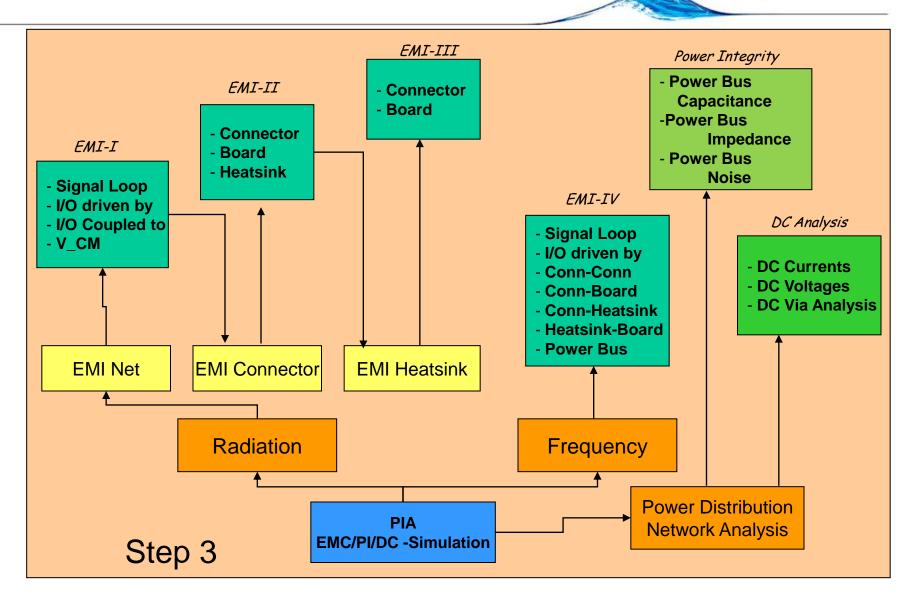


Grid Size		
Min Grid Size:	50.000	µm 👻
Max Grid Size:	200.000	µm 👻



Voltage Distribution (V): Max. Voltage Drop = 32mV

ZUKEN



Load design in PIA

PIA Working Flow (2 of 3)

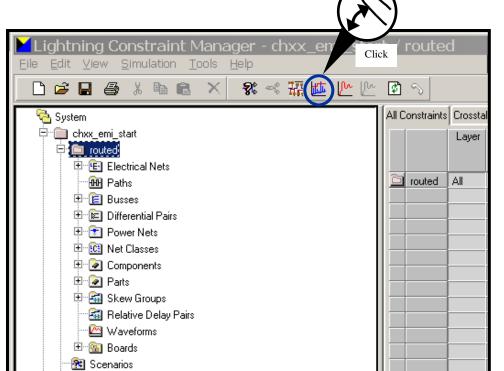
Step 2

PIA Working Flow (3 of 3)

Library/Attribute Information for PIA

- PIA needs some information (of course) to work properly (but no special models nor special data setup is necessary) – even better, in a high-speed or SI flow it should work smoothly.
- It needs information (like a human expert), otherweise its blindfolded (like a human expert will be too).
- It does not need special models, but if presents uses information from IBIS models assigned
- First of all, it needs copper (airlines are not antennas, templates have no capacitance) however, the board must NOT be completely routed !
- The user has to a certain extend interact with the software (→ Classification), this is a mandatory step !
- With respect to data, PI Advance needs to know:
 - Layer stack (not a surprise, correct ?)
 - Materials (conductivity)
 - Device types (RES/CAP/IND), as well ICs and Connectors (for EMI analysis)
 - Heatsinks (for EMC analysis)
 - Values of discrete components
 - Power/GND Pins of devices (connection to power supply systems)
 - ESL/ESR values of DeCaps (for PI AC analysis)
 - ⁴⁹ Source/Sink Current Path and Power Dissipation of ICs(for PI DC analysis)

Exercise 1: Check Design Data for PIA


<u>Steps:</u>

- 1. Launch Pred-HS on design *hs_demo_routed*
- 2. Select Parts in the CM Tree View
- 3. Switch to Modelling TAB
- 4. Compare the entries with those in the picture, **discuss** differences and impact of those (ICs but as well resistors and capacitors) **with your trainer**.(we will fix that later in an exercise and with provided data set)

🖨 🎖 🖻 🛍 🗙 🕏 🛠 🖼 🌆 🗠 🗠 🖉	3													
	All Constraints Crosstalk Distortion Impedance	Dolay Micel Mod	eling Longthening Mul	ti-board Skowl										
■ @ U6														
⊕ 07		Vendor	Device	Input Model	Output Model	Connective Model	Source	Status	No. of Pins	Fallback Technology	Part Name	Resistance (Ohm)	Capacitance (pF)	Ind
🖭 🚳 U8										rechnology		(Unm)	(pr)	
🖻 🚳 U9						l		, <u> </u>						
🕀 🚳 UM1	82HS321AB3A								28					
⊕ @ X1	2 290-004-004								4					
🕀 🚳 X2	ATOM_N270_FCBGA	INT	Diamondville					Part/As:						
🕀 🕲 Y1	H CAP_0.1UF_0402_16V_X7R	ZUKEN	Cap_01uf				Project	Part/As:					100000	
⊞ ₩ γ2	-II- CAP_10PF_0402								2				10	
Parts	H CAP_10UF_0603_6.3V	ZUKEN	Cap_10uf				Project	Part/As:	2				10000000	
🗉 🕮 82HS321AB3A	H CAP_22PF	ZUKEN	Cap_22uf				Project	Part/Ast	2				22000000	
E 290-004-004	H CAP_3900PF_0402_16V_X7R	ZUKEN	Cap_3900pf				Project	Part/As:	2				3900	
ATOM_N270_FCBGA	H CAP_TANT_22UF_16V								2				0	
CAP_0.1UF_0402_16V_X7R	CK505 CLOCK GEN								65					
CAP_10PF_0402	CONN_MAGJACK_ETH_USB								30					
CAP_10UF_0603_6.3V	CONN SATA STRAIGHT SMT .093 PCB								9					
	CONN_SODIMM_DDR2								204					
E	 IC_82574_GIG_ETHERNET 								76					
H CAP_TANT_22UF_16V	 INTEL_945GSE_NORTHBRIDGE 	INT	945GSE				Project	Part/As:	998					
CK505_CLOCK_GEN	INTEL_S4303E_NORTHBRIDGE INTEL_ICH7M_SOUTHBRIDGE	INT	82801GB					Part/Ast						-
CONN_MAGJACK_ETH_USB	NS32032	101	0200105				Project	PalvAst	68					
CONN_SATA_STRAIGHT_SMT093_PCB														-
CONN_SODIMM_DDR2	** R43-1%-0805								2			43		4
IC_82574_GIG_ETHERNET	M RES_0_JUMPER								2			0		4
INTEL_945GSE_NORTHBRIDGE									2			1000		1
INTEL_ICH7M_SOUTHBRIDGE									2			2000		
NS32032	1 RES_4.99K								2			4990		
									2			10000		
Wr RES_0_JUMPER									2			12		
H RES_1.00K	*** RES_24.9								2			25		
									2			27		1
	*** RES_33.2	ZUKEN	Res_33.2				Project	Part/As:	2					
# RES_10K	*** RES 54.9								2			55		
									2			81		
• *** RES_24.9	*** RES_100								2			100		
•	*** RES 475								2			475		
	*** RES NET 56								2			4/5		
+ *** RES_54.9														
	XSTR_4401_SOT23								3					
	XTAL_25MHZ_30PPM								2					
⊞ - ₩ RES 475														
⊕ STR 4401 SOT23														

- From the software bundling point of view PIA is an add-on option to PReditor HS (mandatory), but not license wise related to SI-Verify
- PI-Advance is to be launched from CM using the *icon* (or Tools-PIA) ٠

- PIA Icon gets active (only) when a license is present ! •
- PIA will start up as separate application dialog ٠

Exercise 2: Launch PIA & perform a EMI Analysis Steps:

- 1. Launch PI Advance on design hs_demo_routed
- 2. Run EMC Analysis 🇯
 - Raise Result Window (Radiation)
- 4. Inspect the various GUI columns
- 5. Why some columns in the various results window are empty, others are filled ?

	<mark>htning EMC - routed rif</mark> dit Simulation <u>Wi</u> ndow <u>H</u> elp	Click] 💽
	🗎 🖻 🖀 🗙 🥱 🗐		Y	🗙 mm 🖌 ns	♥ mV ♥ mA ♥	Ohm	v nF v	Y				
_	ommon		Radiation	T.		-		Power Bus				L
<u>C</u> omp	ionent Layer <u>N</u> et		EMI <u>N</u> et EMI <u>C</u> o	innector EMI <u>H</u> e				<u>C</u> ommon <u>I</u> C	Decap			
	Name 🎕 Source 🔳 Mode	elling 🛷 Part Vendor 🛷 📤		🎾 Name	Σ th [dB(μV/m)]	l]/[MHz]			🐲 Power Bus	Capacitance [nF]	Z Max (@ICs) [Ohm]/[MHz]	2
C100	C100	GRM4	%CC%	%CC%				+3.3V_GND	+3.3V_GND			
2101	C101	GRM4	%CCEN%	%CCEN%				+3.3V_SIGN680	+3.3V_SIGN680			T
102	C102	GRM4	%CLR%	%CLR%				+3.3V_SIGN688	+3.3V_SIGN688			
103	C103	GRM4	%FULL%	%FULL%				+12V_GND2	+12V_GND2			
104	C104	GRM4	%OE%	%OE%								
105	C105	GRM4	96PL96	%PL%								
106	C106	GRM4	%RLD%	%RLD%								
107	C107	GRM4	%VECT%	%VECT%								
:108	C108	GRM4	1	1								
200	C200	ECUX	ADDRESS:ADD[0]	ADDRESS:ADD[D]							
201	C201	ECUX	ADDRESS:ADD[1]	ADDRESS:ADD[1]							
C202	C202	ECUX	ADDRESS:ADD[2]	ADDRESS:ADD[2]							
C203	C203	ECUX 🗸	ADDRESS:ADD[3]	ADDRESS:ADD[3]		*					
<	ш	>	<				>	<				
	equency		🞽 Classificatio	V V				Log	MEET is imported in	ecause it is connec		Z
Frequ	iency		Component Net	t <u>S</u> upply <u>P</u> ov	ver Bus			only!	anuost is ignoreu c	ecause it is connet	ted off one side,	Ŀ
			🐔 Name	41. F	art Name	🔩 Cor	mpone	WARNING: Net SI	N650 is ignored b	ecause it is conner	ted on one side.	
			C100 C100	GRM40F470250P		Capacito		only!	j			
			C101 C101	GRM40F104Z50P				WARNING: Net VII	EO: [91.045100,	71.754900] segm	ent of length 0	
			C101 C101 C102 C102	GRM40F104250P		Capacito Decap		skipped!				
			C102 C102	GRM40F104250P		Decap		WARNING: Net SI	GN669: [72.34500	0, 20.320000] seç	jment of length 0	
			C103 C103	GRM40F104250F		Decap	~	skipped!				
			Ein Power Bus			1 ASI ALI	>	WARNING: Net SG skipped!	003109: [100.374	1900, 130.809900) segment of length (0
			En Fower pus					WARNING: Net SG skipped!	003100: [122.549	9900, 100.965100 () segment of length (0
								WARNING: Net SG skipped!	00381: [116.210:	100, 104.775100]	segment of length 0	. '
								WARNING: Net SG skipped!	00370: [96.51490	10, 152.399900]s	egment of length O	
								WARNING: Net SG	00368: [126.9950	100, 88.265000] s	eqment of length 0	
								skipped!	-			
								skipped!		0 127 000100 1 a		

3.

PI-Advance Information: Data Files

- Some technical details behind
 - PI Advance reads CTF and RIF files from <design>\hotstage\emi directory
 - As PI Advance needs the newest RIF format, PI Advance keeps a clone of the design RIF and CTF under <design>\hotstage\emi directory
 - Stored as well is classification data (.ecf) and options (.INI)
 - These files are stored in XML or plain ASCII

georgian an g					
	designs 🕨 hotstage 🕨 emi			🕶 🐓 🛛 emi a	durcł
Organisieren 🔻 In Bibliothek aufnehmen 🔻 Brennen	Neuer Ordner				
designs	 Name 	Änderungsdatum	Тур	Größe	
bluesky	emi_classified.avf	29.07.2005 16:31	AVF-Datei	1 KB	
CAI	emi_classified.ctf	19.05.2009 14:21	CTF-Datei	1.504 KB	
Logical Daughterboard	emi_classified.ecf	19.05.2009 14:21	ECF-Datei	66 KB	
empty	🗿 emi_classified.ini	04.02.2011 13:43	Konfigurationsein	1 KB	
hotstage	🛐 emi_classified.rif	19.05.2009 14:21	PREditor XR Layou	3.461 KB	
ce	lemc-log.txt	19.05.2009 14:21	Textdokument	3 KB	
data					
🔒 dcf					
\mu emi					
🌗 scenario					
📔 se					

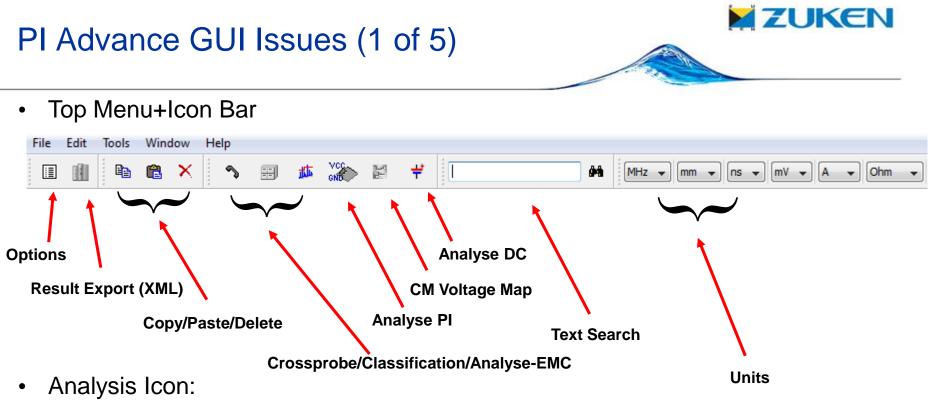
PI-Advance Information: SI-Simulation vs. PIA EMC Analysis

	SI-Simulation (LT/SIV)	PI Advance (EMC)
Function	Considers the Signal Quality (Signal Integrity) . Means the quality of signals which arrive at the receiver. (Reflection, Crosstalk, Timing).	Analyses the various Radiation effects on PCBs. → Which enets could be responsible (in worst case) for radiation.
Typical model	Driver-TL-Receiver	Driver-TL-Receiver-current + current return path (+ IO-Lines + connectors) → System
Results	Very accurate. The simulation results can be compared against measurement.	It shows where the problems are (could be). The results are not matchable (comparable) to the results from the measurement (chamber) but

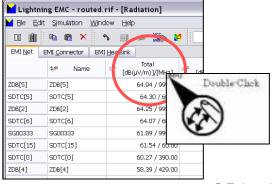
PI-Advance Information: SI-Simulation vs. PIA EMC Analysis

	SI-Simulation (LT/SIV)	PI Advance (EMC)
Process (relevant for simulation)	scs.exe (interactive simulation) scs.exe (batch simulator) impulse.exe (Library) Client Server architecture, if needed, SCS will restart automatically	engineer.exe engineer_solver.exe Only 1 engineer can run properly on a system. (On hang-up, user may have to restart the system (because new bmsmain process is needed → sweeper)) Needs/uses impulse.exe as well !
Required data	CTF	RIF + CTF, to be found in the directory: <design>\hotstage\emi Classification file .ECF</design>
Results are computed by	Field Solver + Simulation Engine (Telegrapher Equation Solver)	Fast UMR (University of Missouri Rolla) EMC algorithms for full PCB EMC simulation, developed by UMR EMC Expert System consortium.
	Time Domain !	Frequency Domain !

PI Advance GUI

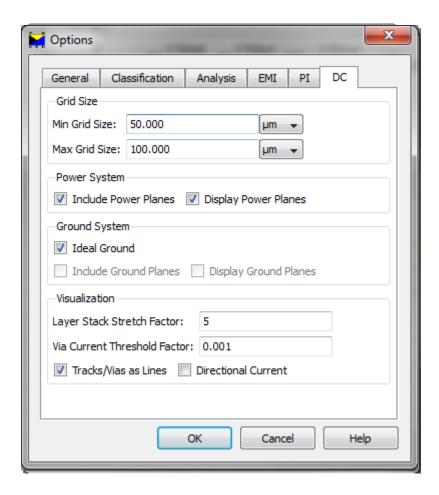


When PI Advance is launched (after CM has written the design data), the GUI is populated with the current design data


→Some preprocessing is done on these data

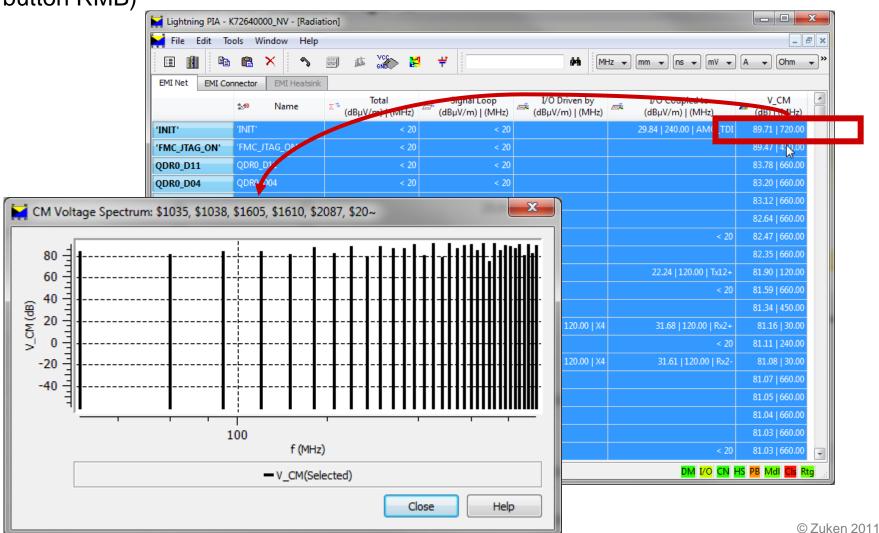
→ Only Common (and classification if data is there) cells are filled. Lightning PIA - emi_classified _ Tools Window Heli 🗈 🖻 🗙 🔊 🗐 🇯 🌋 N. _₩ MHz • mm • ns • V • A • Ohm • nF • nH • W • K Commor - 8 % Power Bus - 0 % Radiation - 9 % Component Layer Net Common IC Decap DC DC IC DC Via EMI Net EMI Connector EMI Heatsink Z Max Total A Name Modelling av Part Vendor Capacitance Siar Nam 🎾 (Oh 2.40 Name (Ohm) | (MHz) (dBµV/m) | (MHz) (dBµV/ C100 C100 GRM40F4 +1.2V_GND +1.2V GND %CC% %CC% C101 C101 GRM40F1 %CCEN% %CCEN% +1.8V_GND +1.8V GND +3.3V_GND C102 C102 GRM40F1 +3.3V_GND %CLR% %CLR% C103 C103 GRM40F1 +3.3V GND2 +3.3V_GND2 %FULL% %EULL% C104 C104 GRM40F1 %OE% %OE% +12V_GND +12V GND C105 C105 GRM40F1 +12V_GND2 +12V_GND2 %PL% %PI % C106 %RLD% %RLD% C106 GRM40F1 -12V_GND -12V GND C107 C107 GRM40F1 -12V_GND2 -12V GND2 %VECT% %VECT% C108 GRM40F1 C108 0VDD GND 0VDD_GND 1 C200 C200 ECUX1H1 2V5_ETH_GND 2V5_ETH_GND ADD[0] ADD[0] C201 C201 FCUX1H1 VREF_GND VREF_GND ADD[1] ADD[1] C202 C202 ECUX1H1 ADD[2] ADD[2] < III . Frequency Classification Value 3.3 V 15 Used Frequency Component Net Supply Via Type DC Via Power Bus TTR -Net SIGN672 has V Min not clearly determined: Default value 0.0 V is used. 🔦 Name Part Name Net SIGN672 has V Supply not clearly determined NOTE : Default value 5.0 V is used. GRM40F470750PT Capacitor C100 C100 NOTE : Net SIGN673 has V Max not clearly determined: Default value 3.3 V is used. C101 C101 GRM40F104Z50P1 Capacito NOTE : Net SIGN673 has V_Min not clearly determined: C102 C102 GRM40F104Z5 Decap Default value 0.0 V is used. Net SIGN673 has V Supply not clearly determined NOTE : C103 C103 175001 Decap Default value 5.0 V is used. NOTE : Net SIGN674 has V_Max not clearly determined: Default value 3.3 V is used. ower Bus DC NOTE : Net SIGN674 has V_Min not clearly determined: Default value 0.0 V is used. NOTE : Net SIGN674 has V Supply not clearly determined Default value 5.0 V is used. NOTE : Net SIGN675 has V_Max not clearly determined: Default value 3.3 V is used. NOTE : Net SIGN675 has V_Min not clearly determined: Default value 0.0 V is used NOTE : Net SIGN675 has V_Supply not clearly determined: Default value 5.0 V is used NOTE : Net SIGN676 has V Max not clearly determined Default value 3.3 V is used. DM I/O CN HS PB Mdl Cls

There are no results available then !


- Sensitive if no results are there, insensitive after analysis
- Becomes <u>sensitive again if settings or data have changed</u> (results are discarted then)
- All columns can be sorted (click on column header):
 - Ascending
 - Descending

PI Advance GUI Issues (2 of 5)

Options:


- General: Decimal points & axis control
- Classification
- Analysis Settings
- EMI: Change antenna distance for far field analysis (>= 3m)
- PI: Effective Series Resistance (ESR) and Effective Series Inductance (ESL) defaults, analysis settings (RLC grid size and grid size relaxation level)
- DC: Grid Size settings, Power/Ground system settings and visualization issues

PI Advance GUI Issues (3 of 5)

Additional information in most table cells (double click of right mouse button RMB)

RMB

PI Advance GUI Issues (4 of 5)

Status Bar (lower right of PI-Advance):

The first 5 indicators show green, yellow, or red levels of emissions for a specific EMC effect. These change their status when a given, user-definable threshold is passed. The thresholds are given in $dB(\mu V/m)$.

- **DM:** Differential mode emission
- I/O: Emission due to I/O-coupling
- **CN:** Cables, attached at connectors act as antenna for current driven common mode emission.
- **HS:** Heatsinks, act as antenna for current driven common mode emission.
- **PB:** PowerBus noise caused emissions.

The last three indicators have a continuous color between red and green depending on the percentage of:

- Mdl: I/O buffer models available at IC pins
- **Cls:** Classification settings are not set to default for: Net type, Clock frequency, Rise- and Fall times
- **Rtg:** Routing completion of the non-supply nets.

DM I/O CN HS PB Mdl Cls Rtg

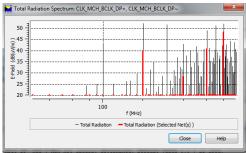
PI Advance GUI Issues (5 of 5)

Result/Plot Windows (Spectrum, Impedances)

All spectral results can be visualized graphically by pressing the right mouse button (RMB) on a selected result cell of a frequency domain result. Spectral plots resp. impedance plots are available for the following result types:

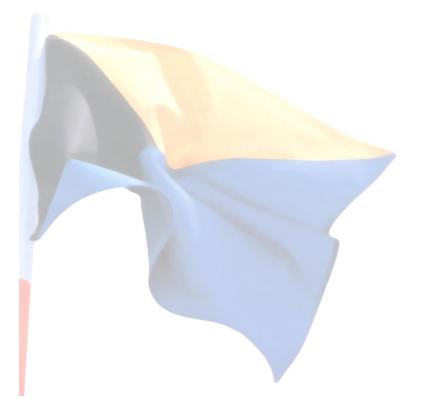
- Electric field strength
- Impedance of the power bus and DeCaps
- Noise voltage due to switching currents
- Common mode voltage due to the signal current per E-net.

Zooming


 Within these plot windows you can always zoom in by opening a rectangle with the left mouse button pressed. Using the middle mouse button, the zoom area returns to the previous state.

Scaling

The type of scaling (linear or logarithmic) and the displayed ranges can be controlled individually for the x- and y-axis within the <u>Option Dialog</u>, depending on the content of the plot. The frequency axis will always be displayed in the same manner, hence the setting for this axis can be done within the General Tab of the Options Dialog.


Units

 The units can be changed within the Options Dialog, General Tab or within the toolbar, if this is enabled in the Options Dialog.

