Hypex Electronics BV Kattegat 8 9723 JP Groningen, The Netherlands +31505264993

Highlights

Extremely low distortion and noise over frequency and power range
Extremely low output impedance
Very high power density
Neutral and transparent reproduction: "Neither dirt nor fairy dust"

Features

- Conservatively rated

Differential audio input

- 2Ω capable
- Extensive, microprocessor-controlled error protection

Applications

Top-end stereo and multichannel amps Active speakers

Description

The NC500 OEM amplifier module is an extremely high-quality audio power amplifier module which operates in class D. Not only does it offer a way for audiophile music reproduction to continue in an ever more energy-conscious world, its measured and sonic performance actually raises the bar for audio amplifiers of any description. Operation is based on a non-hysteresis $5^{\text {th }}$ order self-oscillating control loop taking feedback only at the speaker out put.

Contents

Contents 1
1 Performance data 2
2 Audio Input Characteristics 2
3 Control I/ O Characteristics 2
4 Absolute maximum ratings 3
5 Recommended Operating Conditions and Supply Currents 3
6 Typical perform ance graphs 4
7 Frequently asked numbers 5
8 Connections 5
9 Operation in Hardware mode 7
10 Operation in Software mode 7
11 Application hints 9
12 Drawings 11

NC500

1 Performance data

Power supply $=$ SMPS1200A700, Load $=4 \Omega$, MBW $=20 \mathrm{kHz}$, Source imp=40 $\boldsymbol{\Omega}$, unless otherwise noted

Item	Symbol	Min	Typ	Max	Unit	Notes
Rat ed Output Power	P_{R}		550		W	THD=1\%, Load=2 Ω
			700		W	THD=1\%, Load=4 Ω
			400		W	THD=1\%, Load=8
Distortion	$\begin{aligned} & \text { THD+N, } \\ & \text { IMD }^{1)} \end{aligned}$		0.001	0.005	\%	$\begin{aligned} & 20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}{ }^{1}, 4 \Omega \\ & \text { Pout }<\mathrm{P}_{\mathrm{R}} / 2 \end{aligned}$
Output noise	U_{N}		9	10	$\mu \mathrm{V}$	Unwtd
Signal-to-noise ratio (unweighted, add 2 dB for A-weighted)	SNR	134	135		dB	$\operatorname{Re} \mathrm{P}_{\mathrm{B}}$,
		109	110			Re 2.8Vrms
Output Impedance	$\mathrm{Z}_{\text {OUT }}$		1.5	2	$\mathrm{m} \Omega$	$\mathrm{f}<16 \mathrm{kHz}$
				5	$\mathrm{m} \Omega$	$\mathrm{f}=20 \mathrm{kHz}$
Power Bandwidth	PBW	35			kHz	${ }^{2}$
Frequency Response		0		50	kHz	+0/-3dB. All loads.
Voltage Gain	A_{V}	11.9	12.4	12.9	dB	
Output Offset Voltage	$\mathrm{IV}_{\mathrm{oO}} \mathrm{l}$			50	mV	
Supply Ripple Rejection	PSRR	75	85		dB	Either rail, $\mathrm{f}<1 \mathrm{kHz}$.
Efficiency	η		93		\%	Full power
Idle Losses	P_{0}		6.3	7	W	
Current Limit		25	26	28	A	Hiccup mode after 200ms limiting

Note 1: At higher audio frequencies there are not enough harmonics left in the audio band to make a meaningful THD measurement. High frequency distortion is therefore determined using a $18.5 \mathrm{kHz}+19.5 \mathrm{kHz} 1: 1$ two-tone IMD test.
Note 2: Dielectric losses in the output capacitor limit long term (>30 s) full-power bandwidth to 5 kHz .

2 Audio Input Characteristics

Item	Sym bol	Min	Typ	Max	Unit	Notes
DM Input Impedance	$\mathrm{Z}_{\text {INDM }}$		1.8		$\mathrm{k} \Omega$	Per input $^{1)}$
CM Rejection Ratio	CMRR	50	65		dB	All frequencies

Note 1: See 8.3.

3 Control I/ O Characteristics

Item	Sym bol	Min	Typ	Max	Unit	Notes
Pull-up	$\mathrm{R}_{\text {wpu }}$		27		$\mathrm{k} \Omega$	nAMPON, OPTION, To 3.3V
Logical high input voltage	V_{IH}	2.65		3.6	V	nAMPON, SCL, SDA
Logical low input voltage	V_{LL}	-0.3		0.5	V	nAMPON, SCL, SDA
Logical low output voltage	V_{oL}			0.4	V	nFATAL, SCCPIND, SDA, CLIP $\mathrm{I}_{\mathrm{ol}}=1 \mathrm{~mA}$

NC500 Definitive perform ance class D amp

4 Absolute maximum ratings

Correct operation at these limits is not guaranteed. Operation beyond these limits may result in irreversible damage.

Item	Sy m bol	Rating	Unit	Notes
Power supply voltage	V_{B}	$+/-100$	V	See section 10.3
VDR supply voltage	V_{DB}	20	V	See section 10.3
Peak output current	$\mathrm{I}_{\mathrm{OuT}, \mathrm{P}}$	28	A	Guarded by current limit at 26A
Input voltage	V_{IN}	$+/-15$	V	Either input referred to ground
Input current	I_{IN}	10 m	A	Logical inputs and buffer inputs
Collector voltage	$\mathrm{V}_{\text {OC }}$	35	V	Open collector outputs when high
Collector current	I_{OC}	2 m	A	Open collector outputs when Iow
Air Temperature	$\mathrm{T}_{\text {AMB }}$	65	${ }^{\circ} \mathrm{C}$	Lower improves lifetime
Heat-sink temperature	$\mathrm{T}_{\text {SINK }}$	90	${ }^{\circ} \mathrm{C}$	Thermistor limited. User to select heat sink to insure this condition under most adverse use case

5 Recommended Operating Conditions and Supply Currents

Item	Sy m bol	Min	Typ	Max	Unit	Notes
Power supply voltage	V_{B}	35	84	98	V	Available output power depends on supply volt age
Signal stage supply voltage (positive and negative)	$\mathrm{V}_{\text {SIG }}$	10.5	15	16	V	
Signal stage supply current	$\mathrm{I}_{\mathrm{VSIG}}$		30	35	mA	
External driver supply voltage	V_{DR}	14	15	17	V	Unit protects when allowable range is exceeded
Drive supply current	I_{DR}		70	75	mA	
Load impedance	$\mathrm{Z}_{\text {LOAD }}$	1			Ω	
Source impedance	$\mathrm{Z}_{\text {SAC }}$			50	Ω	Differentially (25 per leg)
Effective power supply storage capacitance	$\mathrm{C}_{\text {SUP }}$	4700			$\mu \mathrm{~F}$	Per rail, per attached amplifier. 4Ω load presumed.

Note 1: The effective power supply storage capacitance of Hypex SMPS is already in excess of 4700uF. Do not add supplementary capacitance.

NC500 Definitive perform ance class D amp
audio powerby hypex ®

6 Typical perform ance graphs

Test conditions: one NC500 powered by SMPS1200A700 with 230VAC mains. Measurement bandwidth $=20 \mathrm{kHz}$ except for small signal tests.

6.1 Small signal tests (all loads)

Frequency response into 8 (green), 4 (blue) and 2 (black) ohms and into open circuit (red).

6.2 Large signal tests (8Ω)

$\mathrm{THD}+\mathrm{N}$ vs. power at 100 Hz (blue), 1 kHz (green) and 6 kHz (red)

Noise floor and distortion residual at 1W.

6.3 Large signal tests (4Ω)

THD +N vs. power at 100 Hz (blue), 1 kHz (green) and 6 kHz (red)

Noise floor and distortion residual at 1W.

Output impedance, four-wire test at speaker terminals.

THD vs. frequency at 10 W (blue), 100 W (green) and 250 W (red)

$18.5 \mathrm{kHz}(50 \mathrm{~W})+19.5 \mathrm{kHz}(50 \mathrm{~W}) \mathrm{IMD} .0 \mathrm{~dB}=100 \mathrm{~W}$

THD vs. frequency at 10 W (blue), 100 W (green) and 500 W (red)
 Hz
$18.5 \mathrm{kHz}(100 \mathrm{~W})+19.5 \mathrm{kHz}(100 \mathrm{~W})$ IMD. $0 \mathrm{~dB}=200 \mathrm{~W}$

NC500

6.4 Large signal tests (2 2)

THD+N vs. power at 100 Hz (blue), 1 kHz (green) and 6 kHz (red)

Noise floor and distortion residual at 1W.

THD vs. frequency at 10 W (blue), 100W (green) and 300 W (red)

7 Frequently asked numbers

The following are neither specifications nor indicators of audio performance but engineering choices which in combination with the specific circuit topology lead to the performance found in section 1. They do not influence sound quality directly. Commonly expressed creeds that an amplifier's suitability for high quality audio can be read from these numbers ($f_{s w}$ in particular) are ill informed.

Item	Sym bol	Min	Typ	Max	Unit	Notes
Switching frequency	f_{sw}		450		kHz	Idle, see the white paper.
MOSFET ON resistance	$\mathrm{R}_{\text {DSoN }}$			100	$\mathrm{~m} \Omega$	Over tolerance and temperature
Dead time	t_{b}		100		ns	"Soft" dead time. Effective value depends on load current
Output coil inductance	L		10		$\mu \mathrm{H}$	Effective output induct ance is this number divided by loop gain.
Output coil resistance	R_{L}		2		$\mathrm{~m} \Omega$	
Output capacitance	C		2		$\mu \mathrm{~F}$	
Loop gain	A_{L}	53		60	dB	Loop gain peaks at 15kHz and drops back to 53dB at 20kHz.

8 Connections

J3: Connector type: 2x18 pin horizontal 0.1" pitch header.

Pin	Type	Name	Function
1,2	Pwr	+HV	unregulated supply
$3,4,5$,	Pwr	GND	
$6,7,8$	Pwr	-HV	unregulated supply
9,10	Pwr	$\mathrm{V}_{\text {DR }}$	External driver supply connection. A floating unregulated supply must be connected between this pin and -HV.
11	Reserved	Do not connect.	
12	-		

NC500 Definitive performance class D amp

$\begin{aligned} & 13,14, \\ & 15,16, \\ & 18 \end{aligned}$	Out	OUTC	Cold speaker terminal.
17	In	FBC	Cold feedback terminal (do not leave unconnect ed, see below)
19	In	FBH	Hot feedback terminal (see below)
$\begin{aligned} & 20,21, \\ & 22,23, \\ & 24 \end{aligned}$	Out	OUTH	Hot speaker terminal.
25	Pwr	$-\mathrm{V}_{\text {Sla }}$	Negative supply for modulat or stage.
26	Pwr	$+\mathrm{V}_{\text {SIG }}$	Positive supply for modulator stage.
27	Pwr	GND	
28	i/o	Iout	Current monitor output, hot (0.1V per Ampere)
29	In	INH	Hot (noninverting) input terminal
30	In	INC	Cold (inverting) input terminal
31	In wpu	OPTION	Control mode and $\mathrm{I}^{2} \mathrm{C}$ address selection
32	In wpu	nAMPON	HW mode: Amplifier enable control
33	O / C	CLIP	Clip indication Pulled low when amp clips. ORtie with other channels and pull up.
34	O / C	SCCPIND	Overcurrent indication
35	O / C Out	SDA READY	SW mode: Data line of $I^{2} \mathrm{C}$ bus HW mode: Operating indicator (active high)
36	$\begin{aligned} & \text { In } \\ & \mathrm{O} / \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { SCL } \\ & \text { nFATAL } \end{aligned}$	SW mode: Clock line of $\mathrm{I}^{2} \mathrm{C}$ bus HW mode: Catastrophic fault indication, inverse of internal FATAL bit.

Note 1: o/ c=open collector
Note 2 : wpu=weakly pulled up to 3.3V, not to be driven above 3.3V.

8.1 Supply connections

An unregulated split supply of $2 \times 84 \mathrm{~V}$ is connected to the -HV , GND and +HV pins. The amplifier will operate from $2 x 35 \mathrm{~V}$ upward but rated output power is not available at low voltages.
The VDR supply should be connected between -HV and VDR. Any other connection may cause damage or excessive heat output.
All GND pins are directly connected to the same ground plane. A separate GND pin (27) is provided near the small-signal end of the connector for convenience only. No distinction is made between "signal ground" and "power ground" because both inputs and outputs are configured as differential signal pairs that do not rely on GND as a reference potential.

8.2 Speaker and feedback connections

The speaker output is the OUTH/ OUTC signal pair. Strictly connect the speaker between OUTH and OUTC. Do not treat OUTC as a ground terminal.
FBH and FBC must be connected to OUTH and OUTC not more than a few cm away from the amplifier. This is done to eliminate the contact resistance of J 3 from the output impedance. The points where FBH/ FBC take off from OUTH/ OUTC may be used to branch off biwired connections. Otherwise, simply connecting all 6 pins 13... 18 (and 19... 24 likewise) with one wide trace is perfectly acceptable.
Using FBH/ FBC to sense remotely (e.g. at the end of a speaker cable) does not work well. Do not leave FBH/ FBC unconnected.

8.3 Audio input

The INH/ INC inputs form a differential pair. Note that the input impedance is fairly low meaning that minimalist discrete circuits or valve input stages won't work. All op amps commonly used in audio can handle them though. See section 11.2 for suggested circuits and connections.
hypex electronics

NC500 Definitive perform ance class D amp

Do not drive the input with fully floating sources, be it electrically floating ones like line driver IC's intended for driving XLR outputs or transformers. Using a floating source will always result in a common mode component that will exceed the common mode input range and will manifest itself as gross distortion. Make sure to set the outputs of your distortion analy ser to grounded, not floating.

9 Operation in Hardware mode

When OPTION (pin 31) is left unconnected, the amplifier is operated in Hardware mode.
Hardware control consists of a single control line, nAMPON. Pulling nAMPON low enables the amplifier as soon as all error conditions have been cleared for at least one second.

9.1 READY

The READY pin is pulled high whenever the amplifier is amplifying audio. When it mutes, for what ever reason, READY goes low. This includes periodic mutes after sustained overcurrent events.

9.2 CLIP

The CLIP indicator pin is active low, open collector, meaning that the CLIP indicator of several channels may be paralleled. An external pull-up resistor should be attached. The CLIP indicator is asserted whenever the amplifier is unable to track the input accurately:

- Normal clipping
- Current limiting
- Signal input during mute

Note that whilst muted the amplifier is clearly unable to track any input other than zero. The application circuit should ignore the CLIP flag when during mute as it is likely that the CLIP indicator will be chattering most of the time.

9.3 SCCPIND

The amplifier has a two-stage overcurrent protection. Short overcurrent events are covered by a cycle-by-cycle limiter which clips the output signal in the current domain. When too many switching cycles are terminated by the cycle-by-cycle limiter, indicating a sust ained overload, the amplifier will mute momentarily to allow the output devices to cool down.
SCCPIND is an open-collector, active low output that outputs the cycle-by-cycle pulses.

9.4 nFATAL

nFATAL is an open collector, active low output which is asserted when the amplifier senses a large DC voltage at the output. When $a>15 \mathrm{~V}$ DC potential is detected, the amplifier will first mute because the reason might well be DC at the input. If this fails to restore the output to zero, nFATAL will be pulled low to indicate cat astrophic failure.
IMPORTANT: For safety reasons, the application must be able to respond to this line by turning the power supply off.
Do not use output relays. Apart from causing distortion, a relay is not suited to disconnect a heavily inductive load like a loudspeaker. Typical loudspeakers store enough energy to weld the relay shut, maintaining the safety hazard.

10 Operation in Software mode

When OPTION (pin 31) is pulled-down, the amplifier is operated in Software mode. In software mode, pin 36 is configured as SCL and pin 35 as SDA. These lines should be pulled to 3.3 V with 4.7 k resist ors externally. The I2C bus should be operated at the standard 100 kHz rate. electronics
NC500 Definitive performance class Damp

10.1 Address selection

The NC500OEM supports up to 16 I2C addresses. Set the address by pulling OPTION to GND through a resistor.

Pull-down resistor at Pin 31	I2Caddress
0	1011000 x
1.8 k	1011001 x
3.9 k	1011010 x
6.8 k	1011011 x
10 k	1011100 x
12 k	1011101 x
18 k	1011110 x
22 k	1011111 x
27 k	1011000 x
33 k	1011001 x
47 k	1011010 x
56 k	1011011 x
82 k	1011100 x
120 k	1011101 x
180 k	1011110 x
390 k	1011111 x

X=r/w bit

10.2 Registers

10.2.1 Register 0: Status byte 1

Bit	R/ W	Function
7	R	FATAL. Shut down power supply im mediately when this bit it set. See 9.4.
6	R	FreqError. Indicates direct short very close to the connector.
5	R	OverLoadError. Flags amp is being muted due to sustained overcurrent
4	R	-HV undervolt age. Clears as soon as -HV is above the UVP limit.
3	R	+HV undervoltage. Clears as soon as +HV is above the UVP limit.
2	R	-HV overvoltage. Clears as soon as -HV has returned below the OVP limit.
1	R	+HV overvolt age. Clears as soon as +HV has ret urned below the OVP limit.
0	R	DC error. Excessive DC content was found at the output.

10.2.2 Register 1: Status byte 2

Bit	R/ W	Function
7	R	Always set to 0
6	R	Always set to 1
5		Reserved
4		Reserved
3	R	Overtemperature. Clears as soon as tem perature has dropped back to the lower hysteresis limit.
2	R	Amplifier Ready. High when the amplifier is working normally and not muted.
1	R	VDR undervoltage
0	R	VDR overvoltage

10.2.3 Register 2: Comm and byte

Bit	R/ W	Function
0	R/W	AmpEnable, write 1 to enable (unmute) amp, clear to mute

NC500 Definitive perform ance class D amp
10.2.4 Register 3-7: Measured parameters

Reg	Function
3	+ HV, in volts
4	- HV, in volts
5	VDR, in tent hs of volts
6	NTC reading, contact for further det ails
7	Frequency reading in units of 64 kHz
8	Product number $(5$ for NC 500$)$

10.3 Protection limits

Item	Sym bol	Rating	Unit	Notes
$+/-$ HV undervoltage		35	V	
+- HV overvoltage		101	V	
VDR undervoltage		13.5	V	
VDR overvoltage		17.5	V	
Overtemperature		95	${ }^{\circ} \mathrm{C}$	
Overtemp, lower hysteresis		85	${ }^{\circ} \mathrm{C}$	

11 Application hints

11.1 Thermal considerations

The amount of cooling needed by the NC500OEM varies with usage. Idle dissipation is around 6.3W. Additional power loss scales linearly with output power. A good rule of thumb is $P_{\text {loss }}=P_{\text {idile }}+0.06 * P_{\text {out }}$. Please refer to the Thermal Design App Note on the Hypex web site for more details.

11.2 Input Conditioning / Buffering

Unlike in many other Hypex products, no input buffer is present as manufacturers of audiophile equipment tend to bypass it anyway and design their own. The NC500 is practically devoid of any sonic signature so this external buffer is a good way of tuning in a "house sound". For direct connection to external equipment, the recommended input circuit is given in Figure 1. EMC/ ESD countermeasures are left out for clarity.

Figure 1: Recommended circuit for XLR inputs
For further clarification of how to connect RCA inputs, please refer to the application note "Dealing with Legacy Pin-1 Problems" on the Hypex web site. It and the further reading referenced in it are a good refresher course in the use of balanced signalling.

NC500 Definitive perform ance class Damp

The impedance of the NC500 input is relatively low and because of the specific configuration, drive currents may become higher than expected. Use the model of Figure 2 to estimate input current:

Figure 2: Equivalent model of NC500 for input current estimation
The input is clearly differential. The optimum choice of input circuit depends on the situation. Most audio designers incorrectly assume that it is necessary to drive differential inputs with symmetrical signals. This is entirely unnecessary. For instance, a single op amp suffices to interface most DAC chips with the NC500 as shown in Figure 3. Circuit values depend on the DAC output voltage and the required maximum output from the amplifier.

Figure 3: Recommended interface between Voltage-out DAC and NC500
The only potential drawback to this method is, depending on the maximum required speaker voltage, the need for fairly high supply rails for the op amp. A symmetrical output voltage solves this but again, this is only a practical consideration. There are no inherent performance benefits attached to symmetry. In fact, in order not to lose performance the drive circuit needs some forethought in order to keep the number of amplifying stages minimal (i.e. one).
The neatest and probably best, but not necessarily the cheapest, is to use an op amp with two outputs as shown in Figure 4.
hypex
electronics
NC500

Figure 4: Interface circuit for low supply rails
A low-cost alternative is building the circuit of Figure 3 twice, once with the inputs reversed and tying INC to the other output. You get double the number of passives but this will be more than offset by the availability of much cheaper lower-volt age duals.

12 Drawings

DISCLAIMER: This subassembly is designed for use in music reproduction equipment only. No representations are made as to fitness for other uses. Except where noted otherwise any specifications given pertain to this subassembly only. Responsibility for verifying the performance, safety, reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer of said end product.

LIFE SUPPORT POLICY: Use of Hypexproducts in life support equipment or equipment whose failure can reasonably be expected to result in injury or death is not permitted except by explicit written consent from Hypex Electronics BV.

Document Revision	PCB Version	Description	Date
R0	NC500 OEM V0.1	Draft/Preliminary	09.05 .2014
R1	NC500OEM V1	New test data, section on audio input revised	
R2	NC500OEM V1	Thermal considerations section revised	11.09 .2014
R3	NC500OEM V1	Dimensions heatsink added	29.09 .2014
R4	NC500OEM V1	Clip function description changed	10.10 .2014

